J. Vis. Commun. Image R. 25 (2014) 689-697

Contents lists available at SciVerse ScienceDirect

J. Vis. Commun. Image R.

Representation

journal homepage: www.elsevier.com/locate/jvci S

Systematic analysis of the decoding delay in multiview video

@ CrossMark

Pablo Carballeira *, Julian Cabrera, Fernando Jaureguizar, Narciso Garcia

Grupo de Tratamiento de Imdgenes, ETSI de Telecomunicacién, Universidad Politécnica de Madrid, 28040 Madrid, Spain

ARTICLE INFO ABSTRACT

Article history:
Available online 19 April 2013

Keywords:
Three-dimensional video
Multiview video coding
Video conference

Low latency

Decoding delay

Parallel processing
Graph theory

Process scheduling

We present a framework for the analysis of the decoding delay in multiview video coding (MVC). We
show that in real-time applications, an accurate estimation of the decoding delay is essential to achieve
a minimum communication latency. As opposed to single-view codecs, the complexity of the multiview
prediction structure and the parallel decoding of several views requires a systematic analysis of this
decoding delay, which we solve using graph theory and a model of the decoder hardware architecture.
Our framework assumes a decoder implementation in general purpose multi-core processors with
multi-threading capabilities. For this hardware model, we show that frame processing times depend
on the computational load of the decoder and we provide an iterative algorithm to compute jointly frame
processing times and decoding delay. Finally, we show that decoding delay analysis can be applied to
design decoders with the objective of minimizing the communication latency of the MVC system.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

For several years, video technologies have targeted the develop-
ment of systems that provide immersive viewing experiences.
Nowadays, the advances in three-dimensional (3D) display tech-
nologies have made 3D video an emerging and sustainable market
in the near future. 3D Video (3DV) and free viewpoint video (FVV)
are new types of visual media that expand the user’s experience
beyond what is offered by 2D video [1], providing a 3D depth
impression of the scene, and interactive viewpoint selection. Cur-
rently, these types of visual media systems are beginning to enter
into consumer markets, such as entertainment and mobile applica-
tions [2]. For those systems, a data format that is richer than single
2D video signal is needed. The spectrum of data formats for 3D Vi-
deo goes from purely image-based data formats like multiview vi-
deo (multiple views of the same scene) to data formats related to
computer graphics like 3D meshes and their corresponding tex-
tures [3]. A widely adopted approach is the one that includes mul-
tiview video and depth sequences as additional scene geometry
information, allowing the possibility of generating additional
views on virtual camera positions [4]. Nevertheless, the size of this
multiview video grows linearly with the number of views while
the available bandwidth is generally limited. Thus, an efficient
compression scheme for multiview video is needed.

Multiview video coding (MVC) [5] is an extension of the H.264/
MPEG-4 Advanced Video Coding (AVC) standard [6] that provides
efficient coding of such multiview video. Besides, as depth signals
can be represented as monochromatic video signals, MVC has been

* Corresponding author.
E-mail address: pcl@gti.ssr.upm.es (P. Carballeira).

1047-3203/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jvcir.2013.04.004

also commonly used to compress them [4]. As an extension of AVC,
MVC makes use of the set of AVC coding tools. The key additional
feature of the MVC design, that increases the coding efficiency spe-
cifically for multiview video, is a new prediction relationship be-
tween frames of different views that exploits the interview
redundancy. This prediction relationship is known as interview
prediction. Fig. 1 shows a sample prediction structure in which
temporal and interview predictions are used.

MVC allows a wide range of applications and scenarios [7].
Here, we address real-time applications such as live broadcasting,
videoconferencing or interactive streaming [8] where constraints
on the end-to-end delay are imposed. The one-way delay between
both ends of the conversation is known as communication latency,
i.e., the delay between the instant when a frame is captured and
the instant when it is displayed at the receiver. In bidirectional
applications, the constraint on communication latency is stricter.
For those, typical recommendations on maximum communication
latency generally state that there is none or little impact below
150 ms, while a serious impact may be observed above 400 ms [9].

Each element (encoder, transmission channel and decoder) con-
tributes to the delay between the instant when a frame is captured
and the instant when it is decoded at the receiver: the system delay.
For each frame, the value of the system delay varies due to differ-
ent factors, such as the required encoding time or the nature of the
transmission channel (variable or constant bitrate, packet losses,
etc.). Since frames have to be displayed at a constant rate, generally
receivers utilize an output buffer for decoded frames, to guarantee
a constant communication latency. In practice, this buffer results in
an additional variable delay for each decoded frame: the display de-
lay. Therefore, the communication latency is the sum of the system
delay and the display delay. In real-time applications, the design of


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2013.04.004&domain=pdf
http://dx.doi.org/10.1016/j.jvcir.2013.04.004
mailto:pcl@gti.ssr.upm.es
http://dx.doi.org/10.1016/j.jvcir.2013.04.004
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci

690 P. Carballeira et al./]. Vis. Commun. Image R. 25 (2014) 689-697

ZEEEN

Fig. 1. Example of a multiview prediction structure for two cameras. Horizontal
arrows correspond to temporal prediction and vertical arrows to interview
prediction.

this output buffer, and the display delay is a challenging issue. On
the one hand, the display delay should be as minimum as possible
since it increases the communication latency. On the other hand, it
has to be high enough to absorb the variability of the system delay
so that frames are displayed at a constant rate. While in non-live
services, such as video on demand, this display delay may be
over-dimensioned with little impact on the service, this require-
ment is stricter in the case of real-time bidirectional services. Thus,
an accurate computation of the system delay is essential to design
a system with a minimum valid display delay.

In [10], we presented a framework for the analysis of the encod-
ing delay for MVC. Now, in this paper, we focus on the analysis of
the contribution of MVC decoders to the system delay: the decod-
ing delay. Our purpose here is to provide tools for an accurate eval-
uation of the decoding delay in order to complete the analysis of
the contribution of the MVC codec processes to the system delay.
The decoding delay in MVC decoders depends on two different
but related factors:

1. The multiview prediction structure: temporal and interview
prediction relationships among frames establish decoding order
dependencies for a frame.

2. The hardware architecture and implementation of the decoder:
specific architectural features of multiview decoders (e.g. num-
ber of processors, use of threads etc.) influence the time needed
to decode a given frame, and therefore, they affect the decoding
delay performance.

Whereas in single view decoders, the computation of the decoding
delay can be easily approximated as the decoding time of one
frame, in the case of MVC, the complexity of multiview prediction
structures, and the presence of several views that need to be de-
coded simultaneously, increase the complexity of the decoding de-
lay analysis. Thus, we present here a framework for the systematic
analysis of the decoding delay in MVC decoders. This framework
evaluates the decoding delay taking into account: (i) the multiview
prediction structure and (ii) the hardware implementation of the
decoder. Nowadays, actual decoders support several parallel
streams and different codecs, and the general tendency is to incor-
porate general purpose processors, in which the decoders are soft-

capt

ware-implemented, instead of traditional dedicated hardware
processors. This tendency is particularly interesting to handle
MVC streams due to its inherent parallelization characteristics
[11,12]. Therefore, our framework assumes a hardware platform
for the decoder based on a multi-core processor with multi-thread-
ing capabilities. We define a decoding process as the set of opera-
tions that are needed to decode a frame. Our model assumes that
any decoding process can run on an exclusively dedicated core (pro-
cessor from now on) or one of the threads that share the processing
power of one of the processors. The required time to run that pro-
cess will be higher if several processes share the same processor.

Analogously to the encoding latency analysis [10], we rely on
graph theory to compute the decoding delay for this hardware
model. A graph is constructed from the multiview prediction
structure in which the frames can be seen as the nodes and the pre-
diction dependencies as the edges. Each edge has an associated
cost that represents the contribution of the prediction dependency
to the decoding delay. We show that frame processing times de-
pend on the computational load of the decoder and we provide
an iterative algorithm to compute jointly frame processing times
and the decoding delay by an iterative analysis of the graph.

In our results, we use the decoding delay analysis to character-
ize the communication latency of a complete MVC system. We
show that this analysis can be used to determine hardware
requirements of MVC decoders, such as number of processors or
processor throughput (number of frames that one processor is able
to decode per second), with the objective of achieving a target
communication latency. For example, we show that for a given
processor throughput, the decoding delay can be reduced by
increasing the number of processors in the decoder, until certain
limit that we can identify. Increasing the number of processors
above that limit does not further decrease the decoding delay.

This paper is organized as follows: in Section 2, we discuss the
communication latency of an MVC system and the role of the
decoding delay on it. In Section 3, we present our framework
for the decoding delay analysis in a multi-thread decoder archi-
tecture. In Section 4 we present the iterative algorithm for the
computation of processing times and decoding delay. In Section 5
we show the experimental results and in Section 6 we present the
conclusions.

2. Discussion on communication latency of MVC systems

As aforementioned, the communication latency indicates the
time elapsed between the instant when a frame is captured, and
the instant when that frame is displayed. A block diagram of an
MVC system and the elements that add to the communication de-
lay between its both ends, are depicted in Fig. 2. For frame x}‘i (frame

j of view i), tcapt; is the instant when x! is captured, twdj.» is the time

instant when x]'ﬁ is completely coded, t,,; is the instant when the
J

MVC Encoder MVC Decoder Display
6<:od TX 6dec 6disp
Sys
Lat

Fig. 2. Block diagram of the MVC system with encoding delay, transmission delay, decoding delay, system delay, display delay and communication latency.



Download English Version:

https://daneshyari.com/en/article/529389

Download Persian Version:

https://daneshyari.com/article/529389

Daneshyari.com


https://daneshyari.com/en/article/529389
https://daneshyari.com/article/529389
https://daneshyari.com

