
Batch-pipelining for multicore H.264 decoding

Tang-Hsun Tu, Chih-Wen Hsueh ⇑, Ja-Ling Wu
Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei 10617, Taiwan, ROC

a r t i c l e i n f o

Article history:
Received 1 September 2011
Accepted 26 March 2012
Available online 9 April 2012

Keywords:
Parallelization
Pipelining
Batch
H.264
HEVC
Multicore
Synchronization
Optimization

a b s t r a c t

Pipelining has been applied in many area to improve system performance by overlapping executions of
hardware or software computing stages. However, direct pipelining for H.264 decoding is difficult
because video bitstreams are encoded with lots of dependencies and little parallelism is left to be
explored. Fortunately, pure software pipelining can still be applied to H.264 decoding at macroblock level
with reasonable performance gain. However, the pipeline stages might need to synchronize with each
other and incur lots of extra overhead. For optimized decoders, the overhead is relatively more significant
and software pipelining might lead to negative performance gain. We first group multiple stages into lar-
ger batches and execute these batches concurrently, called batch-pipelining, to explore more parallelism
on multicore systems. Experimental results show that it can speed the decoding up to 89% and achieve up
to 259 and 69 frames per second for resolution 720P and 1080P, respectively, on a 4-core �86 machine
over an optimized H.264 decoder. Because of its flexibility, batch-pipelining can be applied to not only
H.264 but also many similar applications, such as the next-generation video coding: high efficiency video
coding. Therefore, we believe the batch-pipelining mechanism creates a new effective direction for soft-
ware codec development.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

H.264 is a very popular standard for high-quality video com-
pression of low bitrates [1,2]. However, its high complexity re-
quires large computing power for encoding and decoding. In
H.264, video stream contains a series of groups of pictures (GOPs),
each GOP may contain more than one frames, each frame may con-
tain more than one slices, and each slice may contain thousands of
macroblocks (MBs). Decoding an MB might rely on the information
from many other MBs in the same frame or other frames. Because
of the on-line decoding requirement, tight dependencies of func-
tion components, and complex data structures, it is difficult to ex-
plore the decoding parallelism in H.264. Moreover, considering the
overhead of parallelization, synchronization and merging of partial
decoding results, pursuing parallelism might not always lead to
positive performance gain. Fortunately, we find that there exists
a systematic software approach to parallelize H.264 decoding on
multicore systems.

To parallelize and speed up H.264 decoding, one common idea
is to execute independent computations concurrently, where a
computation might consist of executing multiple decoding compo-
nents. Data and function (or task) decompositions are two fre-
quently used approaches to construct independent computations.

Since GOP-level parallelism requires a lot of memory and results
in high latency and frame-level parallelism needs the support of
corresponding encoders [3], we do not consider using them in this
paper. Because a slice in H.264 might be an independent data unit
that can be decoded on itself, slice-level parallelism [4] is intuitive.
However, for less bitrate, there is usually only one slice encoded in
a frame and MB-level parallelism can be applied directly with mul-
tiple slices. Therefore, we also do not further discuss slice-level
parallelism and focus on MB-level parallelism.

For data decomposition, at MB level, wavefront [5,6] is a tech-
nique to decode several MBs concurrently by rearranging the inde-
pendent MBs in a 2-dimensional manner. However, even if the MBs
can be decoded concurrently, it might incur a lot of overhead due
to the small granularity of synchronization among MBs [7]. Actu-
ally, because of the dependencies of a bitstream itself, the entropy
coding component needs to be decoded sequentially in practice
even using the wavefront technique. Actually, the wavefront tech-
nique is still not fully scalable for decoding. Meenderinck et al. [3]
also extend the 2D wavefront to 3D-Wave for further parallelism.
However, there were no detail implementation results and only
the analysis of highly scalable parallelism was provided. Actually,
the synchronization overhead might be very significant in real
implementation and negative performance gain is possible espe-
cially applied on an already optimized decoder, such as that the
decoding time of a MB is in microsecond level. Wang et al. [7] pro-
posed a scalable parallelizing mechanism for deblocking filter on
four cores, called PD in this paper. The PD mechanism might only

1047-3203/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jvcir.2012.03.009

⇑ Corresponding author.
E-mail addresses: d98944004@ntu.edu.tw (T.-H. Tu), cwhsueh@csie.ntu.edu.tw

(C.-W. Hsueh), wjl@cmlab.csie.ntu.edu.tw (J.-L. Wu).

J. Vis. Commun. Image R. 23 (2012) 742–752

Contents lists available at SciVerse ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate / jvc i

http://dx.doi.org/10.1016/j.jvcir.2012.03.009
mailto:d98944004@ntu.edu.tw
mailto:cwhsueh@csie.ntu.edu.tw
mailto:wjl@cmlab.csie.ntu.edu.tw
http://dx.doi.org/10.1016/j.jvcir.2012.03.009
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci


be suitable for deblocking filter and is optimized on frame level.
However, it can be used together with batch-pipelining.

For function decomposition, Sihn et al. [8] assigned motion
compensation and deblocking filter to different synergistic proces-
sor elements on Cell Broadband Engine [9–11]. However, it is diffi-
cult to port to other multicore systems and might have bottleneck
of scalability on specific hardware, such as the power processor
element. Seitner et al. [12] divided several functions into two parts
on dual cores respectively and developed a simulator for H.264
onto various hardware architectures. Since the number of func-
tions in H.264 is limited and function decomposition is difficult
in general, function decomposition usually requires special hard-
ware assistance.

Traditionally, it is intuitive to parallelize the H.264 decoding
using pipelining at MB level or on functions. Schöffmann et al.
[13] developed a parallel approach using MB pipelining on differ-
ent decoding components. It compared the pipelining approach
with other multi-threading and multi-slicing approaches on differ-
ent multicore systems and concluded that functional partitioning
and macroblock pipelining is a good alternative for the evaluated
videos. However, in spite of the large variation on performance
of different videos, the synchronization overhead among MBs
might become relatively large, especially when the pipelining
stages are executed much faster with better hardware support or
software optimization.

Previous works mostly focused on one of the two decomposi-
tions mentioned above and had big synchronization overhead or
required special hardware support on multicore systems [13]. In
our observation, some components in MB decoding process still
can be done concurrently, such as motion compensation, inverse
discrete cosine transform, and inverse quantization. However, the
dependencies in entropy decoding is inevitable. Therefore, we
adopt both function decomposition and data decomposition at
the same time to explore more parallelism.

We modify the JM reference software [14] (an unoptimized de-
coder) to verify our batch-pipelining mechanism as function
decomposition and apply the mechanism with different optimiza-
tions to an optimized H.264 decoder with PD [15,16] to measure
performance gain. Since the decoding is multi-threading, we also
apply a UDispatch [17] mechanism to verify the flexibility of
batch-pipelining and further improve performance in terms of
operating system issues, where the UDispatch can dispatch threads
to specific cores by users in user mode to optimize multi-thread-
ing. With the optimizations above, although the resultant decoder
is much faster than the real-time requirement, our mechanism is
flexible and can be easily assumed by slower hardware platforms
to provide more cost-effective solutions or applied in higher reso-
lutions. Furthermore, we provide general guidelines of using BP
with examples for more applications, such as an extra mode in
H.264 [18–20] and the next-generation video coding: High Effi-
ciency Video Coding (HEVC or H.265) [21–23].

This paper is an extension of our poster in DCC 2010 [24]. The
rest of this paper is organized as follows. The next section intro-
duces some background of related technologies. In Section 3, we
present and anaylze the batch-pipelining mechanism. Different
optimizations are discussed in Section 4. Experimental results are
shown in Section 5. Section 6 introduces the potential usage of
batch-pipelining mechanism on similar applications. Section 7
concludes this writing and points out the directions of our future
work.

2. Background

In this section, we briefly introduce the H.264 architecture and
the thread anomalies in multi-threading.

2.1. H.264 Architecture

In H.264, a frame is encoded in one or more slices, and a slice
consists of a header and a sequence of MBs. Each MB is of size
16 � 16 pixels and stores the coefficients which are entropy coded.
The MBs are classified into intra MBs and inter (P or B) MBs. Intra
MBs are predicted from previously coded data within the same
slice (intra prediction). The MBs predicted only from the past
frames are called inter P MBs and the MBs predicted from both
the past and the future frames are called inter B MBs. There are
three common types of slices, i.e. I, P, and B slices. I slice consists
only of intra MBs, P slice consists of intra MBs and inter P MBs,
and B slice consists of intra MBs and inter B MBs. As shown in
Fig. 1, each MB follows the same decoding processes. The main
decoding components are Entropy Decoding (ED), Inverse Quanti-
zation (IQ), Inverse Discrete Cosine Transform (IDCT), Intra Predic-
tion (IP), Motion Compensation (MC), and Deblocking Filter (DF)
[2,25].

Since the decoding components are constructed sequentially
with lots of dependencies, it is difficult to apply multi-threading
to explore parallelism on multicore systems, especially when sev-
eral components are already optimized altogether. Therefore, be-
fore we present our batch pipelining mechanism, it is necessary
to discuss the dependencies of decoding an MB. Suppose there is
only one slice in a frame. Fig. 2 shows the dependencies of a cur-
rent MB (Mi,j), where Mi,j stands for the MB at row i and column j
in a frame with two-dimensional representation. To decode an
Mi,j, as shown by the solid lines with arrow, it might refer to much
information from previous neighboring MBs. Since the bitstream is
sequential in nature and coded in variable length, arguments and
coefficients for decoding can not be retrieved until the previous
MBs finish the bitstream parsing, as shown in dashed lines with ar-
row in Fig. 2. Therefore, MBs are usually decoded in a predefined
scan order, e.g. raster scan.

Doing intra prediction in an intra MB might need the informa-
tion of pixels from neighboring MBs, such as pixel value and intra
modes, hence, it might need to wait until previous MBs finish
decoding. Actually, for optimization, intra mode prediction is usu-
ally implemented with entropy coding. However, unlike an intra
MB, an inter MB does not need to refer to pixels from neighboring
MBs. Instead of intra prediction, an inter MB does motion compen-
sation. Motion compensation will refer to relative pixels by motion
vector decoded from previous frames. Note that the motion vector
prediction is also usually implemented with entropy coding for
optimization. In other words, motion compensation is independent
among MBs in the same slice, and it consumes relative large per-
centage of time in processing an MB, e.g. up to 36.7% in our exper-
imental bitstreams. Furthermore, IQ and IDCT of each MB are also
independent and can be executed concurrently.

As described above, basically, the components MC, IDCT and
IQ of inter MBs can be parallelized and decoded first if related
reference frames are done and intra MBs have to be decoded
after the neighboring MBs are processed. However, even though
these components can be executed concurrently, it might incur
large synchronization overhead if the granularity is too small.
Moreover, considering inter slices (P or B), since usually the more
intra MBs, the less compression, hence, the percentage of intra
MBs in an inter slice is usually not much. Therefore, our idea is
to parallelize these independent components systematically in in-
ter slices ‘‘in batch’’ while leaving decoding of the I slices intact
and intra MBs afterwards. Theoretically, these I slices and intra
MBs can be decoded with other techniques, such as wavefront,
for more parallelism. However, the problem of high synchroniza-
tion overhead needs to be solved first for these techniques to be
effective. This is not the focus of this paper and is left as our
future work.

T.-H. Tu et al. / J. Vis. Commun. Image R. 23 (2012) 742–752 743



Download	English	Version:

https://daneshyari.com/en/article/529535

Download	Persian	Version:

https://daneshyari.com/article/529535

Daneshyari.com

https://daneshyari.com/en/article/529535
https://daneshyari.com/article/529535
https://daneshyari.com/

