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Abstract

Most active-contour methods are based either on maximizing the image contrast under the contour or on minimizing the sum of squared

distances between contour and image ‘features’. The Marginalized Likelihood Ratio (MLR) contour model uses a contrast-based measure of

goodness-of-fit for the contour and thus falls into the first class. The point of departure from previous models consists in marginalizing this contrast

measure over unmodelled shape variations.

The MLR model naturally leads to the EM Contour algorithm, in which pose optimization is carried out by iterated least-squares, as in feature-

based contour methods. The difference with respect to other feature-based algorithms is that the EM Contour algorithm minimizes squared

distances from Bayes least-squares (marginalized) estimates of contour locations, rather than from ‘strongest features’ in the neighborhood of the

contour. Within the framework of the MLR model, alternatives to the EM algorithm can also be derived: one of these alternatives is the empirical-

information method.

Tracking experiments demonstrate the robustness of pose estimates given by the MLR model, and support the theoretical expectation that the

EM Contour algorithm is more robust than either feature-based methods or the empirical-information method.
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1. Introduction

Active contour methods find application to tracking when

camera motion prevents the use of background subtraction

methods, and/or when only specific kinds of objects need to be

tracked, and the shape, but not the appearance, of these objects

is known a priori.

Most active-contour methods can be classified as feature-

based if the pose of the object is optimized by minimizing

squared distances between contours and image features; and

contrast-based if the pose of the object is optimized by

maximizing the norm of the image gradient (or some related

measure) underlying the contour. A recent overview of active-

contour methods can be found in [13].

Feature-based methods have found wide application in

tracking [2,3,17,35,37], but feature extraction is a process

notoriously sensitive to noise, which leads to instabilities in

tracking.

Contrast-based methods include the original snake model

[20], the model-based tracker by Kollnig and Nagel [21], and

several methods based on image statistics [12,38,34]. These

methods have the disadvantage of not taking explicitly into

account unmodelled variations of the contour shape. In

addition, gradient-based optimization of the object pose/

shape is not easily applicable to the underlying model

(although it has been shown [21] that the Levenberg–

Marquardt method can be applied).

The MLR (Marginalized Likelihood Ratio) contour model

[29,31] is contrast-based, but allows for random, unmodelled

shape variations. The basic assumptions of the model are as

follows:

(1) grey-level values of nearby pixels are correlated if both

pixels belong to the object being tracked, or both belong to

the background, but there are no correlations if the two

pixels are on opposite sides of an object boundary;

(2) the shape of the contour is subject to random local

variability.
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The first assumption leads to the use of a likelihood ratio as

the objective function to be maximized in pose/shape

refinement. The same principle is adopted in [12,38,34]. The

second assumption implies that the likelihood ratio must be

marginalized over possible deformations of the contour. A

similar principle is adopted in [23]. Taking the two

assumptions together means that no features need to be

detected and matched to the model, leading to greater

robustness against noise; while at the same time local shape

variations are taken explicitly into account. As in many

scenarios involving marginalization, the EM algorithm [24] is a

natural choice for optimization of the marginalized likelihood

ratio. Other modified Newton methods are also applicable.

The MLR model and the EM Contour algorithm have

been developed in previous publications, as applied to

vehicle tracking with 3D models [31,28,6,5] or eye tracking

with 2D models [14–16]. The general MLR model is

discussed more extensively in [29]. This paper contains a

shorter introduction to the model (in the specific form

described in the Appendix of [29]) and focuses on

developing Newton-like methods for pose optimization

based on the MLR model. The three methods considered in

this paper are the EM Contour algorithm, an empirical-

information method [25], and a feature-based contour

algorithm. Both theoretical and experimental comparisons

between these methods are presented.

No performance comparison can conclusively prove the

superiority of an entire class of methods: the experiments with

the empirical-information method are meant primarily to show

that the EM algorithm is not the only feasible optimizer for the

MLR model; the implementation of the feature-based

algorithm is meant primarily to illustrate the similarities in

practice between the EM Contour algorithm and the feature-

based approach. Taken together with the theory developed in

Section 3, however, the performance comparisons suggest that

tracking with the EM Contour algorithm is more robust, while

the computational cost is approximately equal for all

algorithms.

Section 2 describes the MLR contour model. Section 3

derives modified Newton methods for pose refinement based

on the MLR model. Section 4 extends the algorithms from pose

refinement to tracking (Kalman filtering). Section 5 describes

the results obtained by tracking motor vehicles. Finally,

Section 6 contains a discussion of these comparisons.

2. Likelihood model

The object state is described by an m-vector x(t) which is a

function of time t. Given the state and a geometrical model of the

object (which can be a 2D model or a 3D model), the object

contour is projected onto the image plane. The contour is then

used to estimate the likelihood of the image, given the object state.

2.1. The observation

A finite set of n sample points on the contour are used to

estimate the likelihood. The image coordinates and unit

normals to these sample points are computed from the

geometric model together with the estimated state parameters.

The normal line to a sample point will be called observation

line. Due to the aperture problem, only the normal component

of the displacement of the object boundary can be locally

detected. Therefore, only the intersection between the object

boundary and the observation line is of interest in the pose

refinement algorithms. A distinction must also be made

between the predicted intersection (i.e. the contour intersec-

tion) and the actual intersection: these differ not only because

of errors in the state estimate, but also because of errors in the

geometric model.

In the following, the symbol ni will be used for the

coordinate on the observation line indexed by i. The symbol mi
will be used for the coordinate of the contour intersection. The

distance between contour and actual intersection is denoted by

ei. The actual intersection is of course unknown: in general it is

only possible to estimate a pdf (probability density function)

over values of ei. The subscript i will be dropped when not

needed.

The grey-level profile on observation line i will be denoted

by Ii(n). Using a digital computer, only a finite set of grey levels

can be measured on the observation line. Given regularly-

spaced sampling of grey levels (with spacing Dn and bilinear

interpolation) we define the observation as IiZ fIiðj DnÞjj2Zg.

In the following, the subscript j will always denote location on

the observation line. Fig. 1 illustrates the meaning of the

symbols m, n, e, Dn.

2.2. Likelihoods of grey-level differences

In this paper, we consider a specific form of the MLR

model: the general model is described in [29] and the specific

model described here is analyzed in better detail in the

Appendix of [29]. In the specific model, it is assumed that
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Fig. 1. The yellow line represents a model contour, mismatched with the object

boundary, either because of misalignment or because of shape variability. The

green line represents the normal to a sample point on the contour. n is the

coordinate on the normal line, m is the coordinate of the intersection with the

contour, and e is the distance between the intersections of the normal line with

the contour and with the object boundary. Grey levels are sampled on the

normal with a regular spacing Dn. The useful range of sampling of grey levels is

determined by the width s of the Gaussian window (see text). (For

interpretation of the reference to colour in this legend, the reader is referred

to the web version of this article.)
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