
A new technique for generalized learning vector quantization algorithm*

Zhou Shui-shenga,b,*, Wang Wei-weia, Zhou Li-huab

aSchool of Science, Xidian University, No. 2, TaiBai Road, Xi’an 710071, China
bMultimedia Technology Institute, Xidian University, Xi’an 710071, China

Received 6 February 2004; received in revised form 5 December 2004; accepted 30 March 2005

Abstract

The disadvantage of the generalized learning vector quantization (GLVQ) and fuzzy generalization learning vector quantization (FGLVQ)

algorithms is discussed in this paper. And a revised generalized learning vector quantization (RGLVQ) algorithm is proposed to overcome

the disadvantage of GLVQ and FGLVQ. Furthermore, by introducing a stimulating coefficient in completing step, a new competing

technique to improve the performance of the LVQ neural network is proposed also. The proposed algorithms are tested and evaluated using

the IRIS data set. And the efficiency of the proposed algorithms is also illustrated by their use in codebook design for image compression

based on vector quantization, and the training time for RGLVQ algorithm is reduced by 10% as compared with FGLVQ while the

performance is similar. The new competing technique is also used to generate codebook and PSNR is improved in experiments.

q 2005 Elsevier B.V. All rights reserved.

Keywords: LVQ algorithm; Competitive network; Image compression; Codebook; Stimulating coefficient

The objective of vector quantization is to represent a set of

vectors x2X3Rn by a set of c codevectors VZ{v1,v2,.,

vc}3Rn, also referred to as the codebook. Vector quantiza-

tion is a very important technique for image compression [1–

3]. Codebook design can be performed by clustering

algorithms, which are typically developed by solving a

constrained minimization problem using alternating optim-

ization. These clustering techniques include the c-means

algorithm, fuzzy c-means algorithm, etc. The very famous

LBG algorithm [1,2] is a variation of the c-means algorithm

that employs a splitting technique to compensate for the

dependence of c-means algorithm on its initialization.

Recent developments in neural network architecture resulted

in learning vector quantization (LVQ) algorithms [4–10].

Learning vector quantization is the name used for

unsupervised learning algorithms associated with competi-

tive neural networks whose weight vectors represent the

codevectors. Based on ‘winner-take-all’ competing strategy,

T. Kohonen’s [4,5] gave a learning vector quantization

algorithm, named self-organizing feature map (SOFM)

whose performance was greatly affected by the initial

prototypes. Based on ‘winner-take-most’ completing strat-

egy, Pal et al.[6] proposed a generalized learning vector

quantization (GLVQ) algorithm,in which the initial proto-

types have no effect on performance. The fuzzy generalized

learning vector quantization (FGLVQ) algorithm based

‘winner-take-most’ strategy was proposed by Karayiannis

etc [7–9]. Its performance is not affected by the initial

prototypes also.

This paper discussed the advantage and disadvantage of

GLVQ and FGLVQ in Section 1, and proposed a revised

generalized learning vector quantization (RGLVQ) algor-

ithm in Section 2. In Section 3 a new competing technique to

improve the performance of the LVQ algorithms is proposed,

Section 4 presents experiments testing the proposed

algorithms on IRIS data set and also includes the evaluation

of their performance in image compression based on vector

quantization. Section 5 contains concluding remarks.

1. Analysis of LVQ algorithms

Consider the set of samples X from an n-dimensional

Euclidean space Rn and let function f(x) be the probability

Image and Vision Computing 24 (2006) 649–655

www.elsevier.com/locate/imavis

0262-8856/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.imavis.2005.03.005

* Supported by the Defense Pre-Research Project of the ‘Tenth Five-

Year-Plan’ of China No. 413160501.
* Corresponding author. Address: School of Science, Xidian University,

No. 2, TaiBai Road, Xi’an 710071, China. Tel.: C86 298 203 822.

E-mail address: sszhou@mail.xidian.edu.cn (Z. Shui-sheng).

http://www.elsevier.com/locate/imavis


density function of x2X3Rn and let VZ
{v1,v2,.,vc}3Rn be the current codebook or clustering

center, where c is clustering number. Define the loss

function L(x,V) as:

Lðx;VÞZ
Xc

rZ1

urkxKvrk
2 (1)

where urZur(x)(rZ1,2,.,c)is a set of weight and can also

be interpreted as membership function which regulate the

competition between the prototypes vr for the input x. For

input x, vi satisfying kxKvik
2%kxKvjk

2 (jZ1, 2,.,c, jsi)

is the winning prototype. Without loss of generality, let the

weight of the winning prototype be 1, and let other weights

be non-negatives less than 1. The expectation of loss

function L(x,V) is L(V) defined as

LðVÞZ

ð

Rn

Lðx;VÞf ðxÞdx (2)

LVQ algorithms are based on minimization of the

expectation function L(V) to update the clustering center

V. Minimization of (2) using gradient descent is difficult

because the probability density function f(x) is not known

explicitly. Pal et al.[6] suggested the use of the gradient of

the instantaneous loss function (1) to sequentially update the

prototypes V with respect to the input vectors x2X. This
approach is frequently used in the development of learning

algorithm. The process of the LVQ algorithms can be

summarized as follows.

(1) Initialization: select c, fix learning rate h0, the iteration

number T and the initial codebook VZ{v1,v2,.,vc}; let

tZ0;

(2) Calculate learning rate hZh0ð1K t=TÞ;

(3) For each input vector x and current V:

(a) Find the winning prototype vi satisfying kxK
vik

2%kxKvjk
2, cjsi;

(b) Calculate the updating coefficients ur by the

gradient of L(x, V), rZ1,2,.c;

(c) Update vr as vrZvrChurðxKvrÞ, rZ1,2,.c;

(4) If t!T, tZtC1, go to step 2;

(5) Output codebook VZ{v1,v2,.,vc}.

The difference between LVQ algorithms is in different

weight ur selected in Eq. (1) for non-winning prototypes to

minimize the loss function.

In Kohonen’s[4,5] SOFM let urZur(x)Z0, rsi. The

updating coefficients are uiZ1 and urZ0(rsi) and the

performance is greatly affected by the initial prototypes

used. While in GLVQ algorithm, proposed by Pal etc [6],

urZur(x)Z1/D, rsi, where DZ
P

j jjxKvjjj
2. The updat-

ing coefficients ur are

ur Z
1K

1

D
C

kxKvik
2

D2
; r Z i

kxKvik
2

D2
;

8>><
>>:

(3)

Although the performance of GLVQ is not affected by

the initial prototypes used, GLVQ has an obvious

disadvantage: From Eq. (3) we have ui!ur (rsi) and

even ui!0!ur when D!1. It means that in iterating

process the winning prototype will be moving towards input

vector x with little step than the non-winning prototypes do,

and even will be moving away from the input vector x while

the non-winning prototypes will be always moving towards

the input vector x. This is unreasonable and it is the ‘scale’

problem pointed out by Gonzales et al. [10]. It means that

the algorithm is very sensitive to simple scaling of the data

set.

In contrast with above two, FGLVQ algorithms,

proposed by Karayiannis[7–9], let urZurðxÞZdirpðdirÞ

rsi, where dirZkxKvik
2=kxKvrk

2, and p(z) is a

monotonically decreasing function satisfying 0!p(z)!
1/z, cz2 (0,1). FGLVQ are based on the ‘winner-take-

most’ competing strategy also, and let the weights of the

non-winning prototypes vr (rsi) be different with respect

to the distance between vr for input vector x. The

performance of FGLVQ is also not affected by the initial

prototypes used. The updating coefficients ur are

ur Z
1C

Xc

rsi

wðdirÞ; r Z i

nðdirÞ; rsi

8<
: (4)

where w(z)Zp(z)Czp 0(z), n(z)Zz2p 0(z) and p 0(z) is the

derivative of p(z). In Karayiannis etc [7,8], FGLVQ1,

FGLVQ2 and FGLVQ3 are proposed by choosing by

choosing pðzÞZ ð1CazÞK1ð0!a!NÞ, pðzÞZexpðKbzÞ

ð0!b!NÞor pðzÞZ ð1KgzÞð0!g%1Þ, respectively.

According to the different p(z) selected, the updating

coefficient of winning prototype ui is affected by the term

1C
P

jsi wðdijÞ, which depends on the number of the

prototypes c. This dependence could make the performance

of FGLVQ algorithms sensitive to the initial learning rate

h0. The algorithms will not converge when h0 is too big and

the result will hover around the initial prototyped if h0 is too

small. We must adjust h0 to ensure the algorithms to

converge properly. The experimental results in [7] indicated

that: For the clustering IRIS data with 3 prototypes, the

initial learning rate h0 with best performance was near 0.5,

while the vector quantization for image compression with

512 prototypes, the best initial rate was near 0.005.

From analysis above, We can conclude that the

disadvantage of GLVQ and FGLVQ is because the updating

coefficients are not bounded properly.

Z. Shui-sheng et al. / Image and Vision Computing 24 (2006) 649–655650



Download English Version:

https://daneshyari.com/en/article/529618

Download Persian Version:

https://daneshyari.com/article/529618

Daneshyari.com

https://daneshyari.com/en/article/529618
https://daneshyari.com/article/529618
https://daneshyari.com

