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a b s t r a c t

Discrete data are an important component in many image processing and computer vision applications.
In this work we propose an unsupervised statistical approach to learn structures of this kind of data. The
central ingredient in our model is the introduction of the generalized Dirichlet distribution as a prior to
the multinomial. An estimation algorithm, based on leave-one-out likelihood and empirical Bayesian
inference, for the parameters is developed. This estimation algorithm can be viewed as a hybrid expec-
tation–maximization (EM) which alternates EM iterations with Newton–Raphson iterations using the
Hessian matrix. We propose then the use of our model as a parametric basis for support vector machines
within a hybrid generative/discriminative framework. In a series of experiments involving scene model-
ing and classification using visual words, and color texture modeling we show the efficiency of the pro-
posed approach.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays with the huge amount of digital data such as images
and videos, an important and challenging problem is to develop
approaches and models to automatically process, manage and cat-
egorize large collections of this kind of data. A recurring subject in
machine learning and data mining, to reach this goal, is the sepa-
ration of data into homogeneous clusters. This topic has been
extensively studied and different approaches and algorithms have
been proposed and applied to several problems such as image cat-
egorization and retrieval. In particular, statistical models are
widely used and have major challenges namely the choice of
appropriate model structure to capture the characteristics of the
data. These models should be dedicated to the type of features that
we extract in order to represent a given image or video in a way
suitable for its automatic processing. Discrete features appear in
many computer vision, image processing and pattern recognition
applications [1–3]. Some examples are color histograms [4], co-
occurrence matrices [5], correlograms [6], color coherent vectors
[7], and the recently proposed keyblocks (i.e. visual keywords) as
an analogy to dictionaries in the case of text documents [8–10].
One of the most used statistical approaches is finite mixture of dis-

tributions which have been long studied [11]. An important prob-
lem, in the case of finite mixture models, is the choice of the
distribution, since an irrelevant choice may degrade the perfor-
mance of the model. Different assumption have been made in the
case of discrete data. The multinomial represents, however, the
state-of-the-art distribution for discrete data modeling.

In spite of the popularity of the multinomial, recent researches
have shown that it has some drawbacks such as considering that
the events to model are independent [1,12–14]. Another important
problem is the parameters estimation in the case of sparse data1

(i.e. the estimation of the probabilities of rarely observed or unob-
served occurrences) [16,17]. The severity of this problem, which lead
generally to poor biased estimates, has been widely studied by the
natural language processing community, but generally ignored by
image processing and computer vision researchers.2 Different
smoothing techniques have been proposed to overcome these prob-
lems [19]. The most successful approach is the use of the Dirichlet
distribution as a prior, reflecting a certain background knowledge,
to the multinomial which results in a completely formal statistical
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1 This problem is also known as the zero-frequency problem and arises when
dealing with observations that never occurred in the training data [15].

2 A main assumption generally considered in image processing and computer
vision applications is the Gaussian distribution. This assumption, however, is not
realistic when dealing with discrete data. Moreover, it is well-known that the normal
assumption limits the ability to analyze rare events [18].

J. Vis. Commun. Image R. 21 (2010) 613–626

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate/ jvc i

http://dx.doi.org/10.1016/j.jvcir.2010.04.001
mailto:bouguila@ciise.concordia.ca
mailto:m_ghimir@encs. concordia.ca
mailto:m_ghimir@encs. concordia.ca
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci


model [1,13]. Indeed, we have previously proposed a framework in
which finite mixture of Dirichlet distributions was used as a prior
to the multinomial and applied to different applications such as tex-
ture modeling and narrowing the semantic gap for content-based
image summarization and retrieval [1,20,21]. Recently, we have no-
ticed that even the Dirichlet has some problems such as its very
restrictive negative covariance structure which makes its use as a
prior in the case of positively correlated data inappropriate (see
[22,23] for more details and discussions). These problems can be
overcame by the consideration of the generalized Dirichlet distribu-
tion which is more general and offers more flexibility [22,23]. This
specific choice, however, has its problems namely the estimation
of the parameters, which appears to be a laborious task when we
consider the maximum likelihood approach, as we will show in
Section 3.

In this paper, we consider the use of generalized Dirichlet mix-
tures as prior to the multinomial to model and cluster discrete vi-
sual feature vectors in the case of some interesting image
representation applications. We propose a novel approach to en-
hance the estimation and the learning of our statistical framework
parameters. Our approach is based on the maximization of the
leave-one-out (LOO) likelihood through a hybrid expectation max-
imization algorithm which alternates EM iterations with Newton–
Raphson iterations using the Hessian matrix. The proposed model
is also used to generate SVM kernels within a generative/dicrimi-
native framework involving both mixture models and SVM in a
way that combines their respective advantages in order to take
into account the discrete nature of the data. Indeed, mixing gener-
ative and discriminative approaches has attracted a lot of attention
and some theoretical studies have shown its several advantages
such as providing lower test error than both generative and dis-
criminative techniques [24]. Moreover, generative/discriminate
approaches have been found to be useful in many practical appli-
cations [25]. Our experiments involve a number of interesting
applications such as scene modeling and classification using visual
words and color texture modeling.

The rest of the paper is organized as follows. In Section 2, we re-
view the multinomial assumption and both Dirichlet and general-
ized Dirichlet distributions used as priors for smoothing purposes.
Section 3 gives a new approach for the estimation and selection of
multinomial generalized Dirichlet mixtures. In Section 4, we pres-
ent a generative/discriminative framework based on our developed
model and SVM. Section 5, details our experiments. Finally, Sec-
tion 6 summarizes our contributions and outlines future
directions.

2. The discrete statistical model

Let ~Xi ¼ ðXi1; . . . ;XiDi
Þ; i ¼ 1; . . . ;N, be a discrete vector repre-

senting a given image, Di is the number of visual features in the im-
age, and each variable Xid, d = 1, . . . ,Di, takes on values on a V-size
visual corpus (or dictionary) that is a finite set of discrete values.
Then, a classic assumption is that ~Xi is generated by the following
model:

pð~Xi j~pÞ ¼
YDi

d¼1

YV

v¼1

pdðXid¼vÞ
v ¼

YV

v¼1

pfiv
v ð1Þ

where d(Xid = v) is an indicator function, {fiv} are the frequencies of
values v in ~Xi and represent the sufficient statistics, ~p ¼ ðp1; . . . ;pV Þ
is the parameter vector of a multinomial,

PV
v¼1pv ¼ 1.

Recent machine learning researches3 have shown, however, that
the multinomial assumption as a naive Bayes approach has several

drawbacks and suffers from the zero counts which create serious
obstacles [1,12–14]. For instance, data sparseness problem makes
the maximum likelihood (ML) approach to estimate the pv parame-
ters unreliable [30]. Indeed, it is easy to show that the ML estimate is
simply

p̂v ¼
fivPV
v¼1fiv

ð2Þ

Moreover, it is clear that p̂v is zero for any feature that does not
appear in ~Xi, since the probabilities are estimated by the fraction
of times the feature occurs over the total number of opportuni-
ties. The unreliability of ML estimates can be generalized for fea-
tures which appear rarely (i.e. with small frequency). In order to
adjust the ML estimates, a widely used approach is to modify the
sample counts by augmenting them with some chosen values
(i.e. pseudo-counts) and a common choice is to add 1 to all
frequencies4:

p̂v ¼
1þ fiv

V þ
PV

v¼1fiv
ð3Þ

This adjustment is actually a special case of another classic ap-
proach to prevent zero probabilities which is the consideration of
a Dirichlet prior for ~p:

pð~pj~aÞ ¼ Cð
PV

v¼1avÞQV
v¼1CðavÞ

YV

v¼1

pav�1
v

where ~a ¼ ða1; . . . ;aV Þ. The Dirichlet distribution depends on V
parameters a1, . . . ,aV, which are all real and positive. The choice of
the Dirichlet distribution is motivated by the fact that it is closed
under multinomial sampling (i.e. the Dirichlet is a conjugate prior
for the multinomial) [33]. Using the Dirichlet as a prior, we can
show that [1]:

p̂v ¼
av þ fivPV

v¼1av þ
PV

v¼1fiv
ð4Þ

where
PV

v¼1av is generally called equivalent sample size, since it
can be interpreted as augmenting the actual frequencies byPV

v¼1av virtual ones [34]. Note that the last equation is reduced
to Eq. (3) when we consider a symmetric Dirichlet, as a prior, with
parameters av = 1, v = 1, . . . ,V. In spite of its flexibility and the fact
that it is conjugate to the multinomial which have led to its
application in different learning approaches and techniques, the
Dirichlet has a very restrictive negative covariance matrix which
violates generally experimental observations [35–37]. Another
restriction of the Dirichlet is that the variables with the same
mean must have the same variance as shown in [38]. These
problems can be handled by the consideration of a generalized
Dirichlet as a prior [3]:

pð~pjnÞ ¼
YV�1

v¼1

1
Bðav ;bvÞ

pav�1
v 1�

Xv

l¼1

pl

 !cv

where Bðav ;bvÞ ¼ Cðav ÞCðbv Þ
Cðavþbv Þ

. The generalized Dirichlet depends on
2(V � 1) parameters n = (a1,b1, . . . ,aV�1,bV�1), which are all real
and positive, and cv = bv � av+1 � bv+1 for v = 1, . . . ,V � 2 and
cV�1 = bV�1 � 1. Note that the generalized Dirichlet is reduced to a
Dirichlet with parameters (a1, . . . ,aV�1,aV = bV�1) when
bv = av+1 + bv+1. The particular choice of the generalized Dirichlet
as a prior has several advantages which we have widely discussed
in our previous works [22] such as its general covariance matrix
and the fact that it is also conjugate to the multinomial. Using this
prior, we can show that [22]:

3 Note that the drawbacks underlying the multinomial assumption have been
discussed a long time ago by statisticians (see [26–29], for instance).

4 This choice is usually referred to as Jeffrey’s estimate [31,32, p. 293] or Laplace
smoothing [19].
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