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Most object detection approaches proposed over the years rely on visual features that help to segregate
objects from their backgrounds. For instance, segregation may be facilitated by depth features because
they provide direct access to the third dimension. Such access enables accurate object-background seg-
regation. Although they provide a rich source of information, depth images are sensitive to background
noise. This paper addresses the issue of handling background noise for accurate foreground-background
segregation. It presents and evaluates the Region Comparison (RC) features for fast and accurate body
part detection. RC features are depth features inspired by the well-known Viola-Jones detector. Their per-
formances are compared to the recently proposed Pixel Comparison (PC) features, which were designed
for fast and accurate object detection from Kinect-generated depth images. The results of our evaluation
reveal that RC features outperform PC features in detection accuracy and computational efficiency. From
these results we may conclude that RC features are to be preferred over PC features to achieve accurate
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and fast object detection in noisy depth images.
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1. Introduction

In the last few years, the automatic detection of objects from
digital video and image sources has gained considerable attention
within the field of image analysis and understanding [1-3]. Many
object detection approaches focus on two-dimensional visual fea-
tures [4-6] in order to segregate objects from their backgrounds.
Well-known visual features for object detection are the Haar-like
features [7] as proposed by Viola and Jones [8,9].

Despite the widespread and successful use of two-dimensional
(2D) visual features in visual detection tasks, they have some lim-
itations. Their main limitation is that they typically respond to
local visual transitions, without being sensitive to the larger spatial
context [10]. As a consequence, they are sensitive to factors that
may influence scene properties locally, such as illumination condi-
tions [11,12]. Bright lights, for example, may cause shadows (i.e.,
non-object contours) in the image. Local 2D visual features will
respond to the contours of the shadows in the same way as to
the contours of other, real objects.

Typical situations in which 2D visual features fail, are those
where variations in the third dimension (depth) lead to shape
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deformations. In general, the failures are caused by object pose
variations [1,13]. A wide variety of methods attempts to overcome
these sensitivities. The most frequently applied methods focus on
extracting context-sensitive features (see, e.g., [4]). Although such
approaches improve classification performance, they tend to be
costly in terms of computational resources [13,14].

1.1. From 2D features to 3D features

To overcome the limitations of 2D features, researchers have
added a third dimension, yielding 3D features (which combine
2D spatial and 1D depth information) [15-19]. Depth cues will
then provide contextual information for a scene, thereby facilitat-
ing image segmentation [20-23]. Indeed, visual objects such as
faces or persons are much easier to distinguish in a 3D space than
from a 2D image [24,25]. In recent years, the use of depth cues
became feasible by the development of affordable depth sensors,
such as Microsoft Kinect [26].

1.2. Capturing depth with Microsoft Kinect

The Microsoft Kinect device generates its depth images by (1)
illuminating a spatial area with the Kinect’s infrared laser, and
(2) triangulating the corresponding depth using an infrared sensor
[27]. The infrared laser passes through a diffraction grating and is
thus able to create a grid of infrared dots. Given the known spatial
distance between the Kinect’s infrared laser and sensor, the pro-
cess of matching the dots observed in an image (where the dots
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are projected using the pattern from the diffraction grating) allows
for effective depth triangulation. The resulting depth images have a
resolution of 640 x 480 pixels. The pixel values of the depth
images encode for the distance between an object and the Kinect
device. A large depth value indicates a large distance between
the object and the Kinect device, while a small depth value encodes
for a small distance. Figs. 4-6 show several examples of depth
images that are created with a Kinect device.

1.3. Shotton’s pixel comparison features

Using the Microsoft Kinect, Shotton et al. [28-30] proposed a
depth-based object detection algorithm that is able to classify indi-
vidual pixel locations from single depth images as belonging to
faces, body joints and body parts. To classify the pixel locations,
Shotton et al. select a subset of random pixel locations from each
depth image. For each pixel location P from the subset, the depth
difference is computed by comparing the depth values at two ran-
domly chosen offset locations Q and R. The offset locations are
defined by the radius and angle with respect to P. The radius is
defined to be inversely proportional to the depth value of P. A small
depth value results in a larger radius for offset locations P and Q,
and vice versa. This way, a scale-invariant measure of depth is
obtained. A single depth comparison between locations Q and R
provides only a weak indication of the depth difference in a spatial
area. Repeating the measurements for other random locations
around point P, however, provides a fair description of the depth
difference in an area around the location of point P. For the sake
of readability, we refer to these pixel-based depth comparison fea-
tures as the Pixel Comparison (PC) features.

There are two advantages of classifying individual pixel loca-
tions rather than image regions (e.g., by means of a sliding win-
dow): (1) the selection process allows for the detection of
partially occluded objects, and (2) the classification process
reduces the time required to process an entire depth image. Thus,
using the PC features makes their detector computationally effi-
cient. In addition to these qualities, the detector works directly
on the raw input depth data, i.e., without an image preprocessing
stage to reduce noise in the data [31]. The combination of efficient
depth-comparison features and the raw input depth image results
in a high detection speed, which allows for real-time operation.

The detection speed, however, comes at the cost of accuracy.
The classification accuracy is hampered by two limitations
[26,32,33]: (1) the limited quality of the depth images generated
by the Kinect device, and (2) the limited resolution of the depth
images. The first limitation arises from the triangulation sensor
as used by the Kinect device. Depending on the image geometry,
parts of a scene may not be illuminated by the sensor’s laser, i.e.,
the grid of infrared dots. These parts are therefore not captured
by the infrared sensor, which results in empty regions in the depth
image [32]. The second limitation is due to the point density of the
Kinect device’s sensor. Using its laser and depth sensor, the Kinect
device generates a point cloud of triangulated depth measure-
ments. The dimensions of the spatial area that are covered by the
point cloud increase quadratically with distance from the Kinect
device. Hence, the resolution of the depth images generated by
the Kinect device decreases with the distance [32]. These two lim-
itations result in noisy depth measurements. It calls for feature
computation methods that are able to efficiently deal with the
noisy nature of depth images.

1.4. Improving object detection in depth images
Shotton et al. suggested that a larger computational budget may

allow for the design of “potentially more powerful features based
on, for example, depth integrals over regions, curvature, or more

complex local descriptors” [29]. Alternatively, studies seeking to
improve object detection in depth images [34] can opt to use a lar-
ger computational budget to refine the input depth data itself, e.g.,
by including an advanced depth image filter and refinement tech-
niques [35-38].

This paper proposes an improvement of Shotton et al.’s Pixel
Comparison (PC) features by introducing advanced region-based
descriptors, that do not require an increased computational bud-
get: the Region Comparison (RC) features. Inspired by the work
by Viola and Jones [8], Haar-like region features [7,39] are com-
bined with the integral image representation [39] to detect transi-
tions in adjacent regions of depth images. The RC features provide
an indication of the direction and the extent of depth transitions in
an area of a depth image by averaging over regions, i.e., large
groups of pixels. The additional computational cost to calculate
the surfaces of the regions is negligible when integral images are
employed [40,41]. It is, however, unclear to what extent RC fea-
tures enable fast and accurate body part detection in noisy depth
images. To assess to what extent the RC features enable fast and
effective body part detection in noisy depth images, we first define
the region comparison detector which incorporates our RC features.
Then, we compare its performance to a detector that deploys Shot-
ton et al.’s PC features: the pixel comparison detector. In a compar-
ative evaluation of the RC and PC features, both associated
detectors are trained and evaluated on three quite different and
challenging object detection experiments: two face detection tasks
(with smoothed background and non-smoothed background) and a
person detection task. There are two evaluation criteria. The first
evaluation criterion is the classification performance, which is
defined as the average per-class segmentation accuracy. The sec-
ond evaluation criterion is computational efficiency, which is
defined in terms of the time required to process an entire depth
image. A shorter processing time therefore corresponds to a higher
computational efficiency. It is assessed to ensure that improve-
ments in accuracy do not lead to insurmountable computational
costs that prohibit real-time operation. We consider the RC fea-
tures superior to the PC features only when the detector incorpo-
rating the RC features outperforms the detector featuring the PC
features on evaluation criterion 1 and performs equally well or bet-
ter on evaluation criterion 2.

1.5. Related work

Our approach for improved detection accuracy in depth data
deals effectively with background noise, without requiring addi-
tional computational power. It relates to several contributions in
the fields of image refinement, computer vision and image under-
standing. In what follows, the related work is discussed, and -
where appropriate — we describe how the work discussed inspired
our research.

First, several approaches aiming to counteract background
noise in depth data include advanced depth image filter and refine-
ment techniques [35-37]. Although image refinement is likely to
improve the quality of the input depth data, it comes at the cost
of computational power. This may influence the detection time
negatively. An interesting approach was presented by Fanello
et al. [38] in the form of their ‘filter forests’. Using location-
dependent adaptive filters, their approach can be used to refine
the quality of depth images. Such filters are computationally
demanding and therefore not suitable for our goals. Inspired by
their approach, our RC features incorporate a more straightforward
- and computationally less demanding - way of filtering noisy
depth images.

Second, Nanni et al. [42] aim to detect human faces by applying
the well-known Viola-Jones detector [8] to visual (RGB - Red
Green Blue) images. Aligned depth images are then used to validate
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