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a b s t r a c t

In this paper, we propose a novel algorithm for single image super-resolution by developing a concept of
cluster rather than using patch as the basic unit. For the proposed algorithm, all patches are splitted into
numerous subspaces, and the optimal representation problem is solved with jointly low-rank and sparse
regularization for each subspace. By enforcing global consistency constraint of each subspace with
nuclear norm regularization and capturing local linear structure of each patch with ‘1-norm regulariza-
tion, effective matching functions for test and exemplar patches can be created. Accordingly, the desir-
able results with low computational complexity are obtained. Experimental results show that the
proposed algorithm generates high-quality images in comparison with other state-of-the-art methods.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Single image super-resolution (SISR) is a technology that can be
used to generate a plausible and visually pleasing high-resolution
(HR) image from a given low-resolution (LR) input image. How-
ever, it is a typically ill-posed problem which is dramatically
under-constrained due to the insufficient observations. A key issue
of SISR is how to exploit the external information or prior knowl-
edge to predict the high-frequency details lost in the LR images.

Various algorithms with different assumptions and recovery
criteria have been proposed to solve the SISR problem. According
to the use of priors, the generic SISR algorithms can be categorized
into four types – prediction models, edge based methods, exploit-
ing image statistical priors, learning methods (also called example-
based methods). Besides, deep learning method were applied to
SISR by learning an end-to-end mapping between LR and HR
patches [1].

The basic prediction model is conventional interpolation meth-
ods, of which bilinear, bicubic are most used. HR pixel intensities
are generated by weighted neighboring LR pixels, which is simple
and effective on smooth regions, but lead to artifacts at high-
frequency regions and blurring effect along edges. Given an initial

HR image, the IP method [2] iteratively generated a LR image with
a predefined downsampling model and effectively compensated
the divergent map in LR back to the HR image. With this method,
the contrasts along the edges were better enhanced than the
results obtained by bicubic interpolation. In [3], the authors pre-
sented an alias-free upsampling technique to perform image
super-resolution. To improve the accuracy of prediction, He et al.
proposed a framework for SISR only using the original LR image
and its blurred version, where each pixel was predicted by its
neighbors through the Gaussian process regression [4].

A key point in SISR is to predict the high-frequency information.
Edge details, known as important primitive image structures, are
usually lost in the HR image. Representative works based on edge
priors include [5,6]. In [5], authors trained a gradient profile prior
based on an intermediate bicubic interpolated images. However,
the high-frequency texture details may not be generated due to
the use of interpolated image. Similarly, Tai et al. [6] learnt a kernel
regression function and utilized a post-processing filter to suppress
median gradients cased by image noise, which may lead the corre-
sponding mid-frequency details in the real image to be wrongly
reduced.

For natural images, an important property is heavy-tailed distri-
bution when applying derivative filters into the image. Somemeth-
ods based on statistical priors such as [7–9] exploited image
statistical distributions to regularize the LR images. However, the
distributed properties are often corrupted by the noise. As a result,
it is hard to seek an approximate model for actual distributions. In
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addition, some regularization terms such as total variation [10],
autoregressive model and non-local self-similarity [11], and
group-sparse [12] have been used for generating HR image. Though
these regularization terms are simple and effective, lacking exter-
nal information to predict the rare details in the HR image is the
disadvantage.

Exemplar images containing abundant visual information can
be used to enrich the fine details of LR image. The learning-based
approaches, assuming the high-frequency details lost in the image
can be learnt from training sets, have been attracting considerable
interest recently. In [13], Freeman et al. proposed an example-
based super resolution method where the LR to HR prediction
was learned via a Markov random field (MRF). In [14], the high-
frequency details of the underlying LR image were estimated by
kernel ridge regression (KRR). In addition to pixel values of
patches, representing images in transferred domain, such as wave-
let coefficients [15] or image contourlet [16] have also been devel-
oped. Jiji et al. [15] used wavelet transform to decompose the
observed image as well as the training images. Wavelet coefficients
of the super resolved image were learned from the coefficients of
images in the database. The HR image was estimated under a
MAP frame work using the learned wavelet prior. The authors also
suggested reconstructing the HR image using the contourlet trans-
form [16]. Two recently typical examples are neighbor embedding
(NE) methods [17] and dictionary learning methods. NE were
inspired by the locally linear embedding, under the assumption
of manifold local similar geometries, and the HR image patches
were constructed by linearly combining the corresponding HR
counterparts. In [18], the authors introduced a newmanifold learn-
ing method and explained its relationship with SISR. Considering
that NE was not always true for complicated texture structures,
Zhang et al. [19] proposed an unsupervised Gaussian mixture
model and used a supervised neighbor embedding to estimate
HR patches. Since the NE carried out two independent processes
to synthesize HR patches, the separate processes were not optimal.
Sparse neighbor embedding with predetermined neighbor and
robust-SL0 algorithm was suggested in [20]. Noted that similar
patches spanned low-rank structures, a novel single image super-
resolution method based on the low-rank matrix recovery (LRMR)
and NE were proposed in [21].

A different line of NE is sparse representation or dictionary
learning. Researches on image statistics suggest that image patches
can be well represented as a sparse linear combination of elements
from a given over-complete dictionary. As an initial investigation,
Yang et al. [22] employed sparse coding methods to perform image
super-resolution. The basis of this approach is that each pair of HR
and LR patches have a pre-specified correspondence. As the exten-
sion, some recent works [23–26] boosted [22] in quality and speed
by changing the strategies of learning of the coupled dictionaries
and characterizing the relationship between LR and HR patch
spaces. Purkait et al. [27] partitioned the natural images into doc-
uments and grouped them to discover the inherent topics using
probabilistic Latent Semantic Analysis (pLSA). They found the dual
dictionaries of HR and LR image patch pairs for each of the topics
and incorporated multiple dictionaries for a more accurate predic-
tion rather than a single sparse dictionary. In [28,29], Radu et al.
supported the use of sparse learned dictionaries in combination
with neighbor embedding method and simple functions. They
found the nearest neighbor based on the correlation with dic-
tionary atoms rather than the traditional Euclidean distance. To
avoid invariance assumption, which was a common manipulation
in sparse representation, Peleg and Elad [30] used a statistical
model by means of MMSE estimation and a feedforward neural
network to obtain HR patches. Similarly, Zhu et al. [31] proposed
the concept of deformation, which regarded the patch as a flexible
deformation flow rather than a fixed vector for SISR. By this means,

the dictionary is more expressive than traditional methods. Taking
advantage of the beta process factor analysis, a series of beta pro-
cess joint dictionary learning approaches such as [32–34] were
proposed. In this way, the sparse representation can be decom-
posed to magnitudes and dictionary atom indicators so that the
mapping between coupled feature spaces are consistent and accu-
rate. Another innovative method was to cluster the LR patch space
and learn a separate mapping from LR to HR space for each cluster,
as proposed by Yang and Yang [35].

The recent evaluation of representative SISR techniques demon-
strates the powerful ability, but there are still considerable chal-
lenges. As a powerful tool, the sparse representation approaches
demonstrate perfect capabilities in SISR, however, they find the
sparsest representation of each data individually, lacking global
constraints on the solution space. To capture the global subspace
structures, Liu et al. [36] proposed a method termed low-rank rep-
resentation (LRR). In general, LRR jointly represents all the data
under a global low-rank constraint, so it is better at capturing
the global data structures (e.g., multiple clusters or subspaces). It
has been proven that LRR can preserve exactly the membership
of the samples belonging to the same subspace under mild condi-
tions. In addition, the traditional patch based strategies recover
each patch independently, ignoring the relationship among
patches in the proposed image. The image structures tend to
redundantly repeat themselves within and across different scales.
If one divides patch spaces into different clusters, similar patches
in the same cluster can form a low-dimensional subspace. It is nec-
essary to further explore the underlying low-rank structure. As
known, the training sets are relatively redundant, a trained dic-
tionary or predicted model may be only effective for a given image,
one has to train different dictionaries again. The topic that how to
develop an online algorithm eliminating irrelevant data and recov-
ering images in accordance of their characteristics is worth study-
ing. Inspired by the LRR and structural similarity, we address these
challenges in a unified framework, which implements a divide-
and-conquer approach by splitting the test and training LR patches
into different clusters and recovering the HR image in the domain
of cluster. In specific, we collect exemplar and test patches lying on
manifolds in the same space to learn an anchored regression by
solving jointly a low-rank and sparse representation problem (for
the resulting matrix please refer to Fig. 1(a)). In this way, the global
mixture structure of each cluster and local linear structure of each
patch can be exploited simultaneously in a unified framework so
that the high-quality HR images are generated by developing exact
mapping for the test and training images.

This paper is organized as follows. In Section 2, we motivate the
need for recovering the HR image in the field of cluster with ‘1-
norm and nuclear norm. Section 3 presents the relevant model
and the iterative optimization algorithm for solving the model.
Subsequently, to demonstrate its advantages over other methods,
the performance of our method is evaluated in Section 4. Finally,
Section 5 gives the conclusion.

2. Motivation

In this section, we provide motivation for recovering the HR
image in the domain of cluster with a jointly low-rank and spare
representation problem. We consider a set of 300 similar patches
of size 8� 8 that are extracted out of image Lena. For each patch,
we perform a preliminary step of DC removal by subtracting the
average magnitude of the patch and use the OMP algorithm to cal-
culate the sparse representations of these patches over an trained
dictionary of size 64� 256. These representations are stacked into
a matrix of size 256� 300. Fig. 2(a) and (b) shows the image of the
matrix and the singular value distributions obtained by singular
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