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a b s t r a c t

In this paper, we present a fast non-blind deconvolution method for restoring blurred images contami-
nated by Poisson noise. The problem is formulated by finding the minimizer of the negative logarithmic
Poisson log-likelihood combined with the total variation (TV). To attack the challenging task, we adopt
the well-known variable splitting and penalty technique to convert the problem into two easier
sub-problems: one is a modified TV regularized deconvolution and the other is a simple convex optimiza-
tion problem. Experimental results show that the proposed method runs very fast and the quality of the
restored image is comparable with that of some state of the art methods.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Blurring is one of the most common phenomena that degrade
the quality of the obtained images. In mathematics, it is formulated
by convolving the latent image with a point spread function (PSF),
besides, due to the measurement error, some noise must be added,
i.e.,

g ¼ hoþ n ð1Þ

where g, o and n represent the vector forms of the blurred image,
latent image and noise, respectively, h denotes the convolution
matrix of the PSF. The noise n is a random variable which is usually
modeled by the Gaussian or the Poisson distribution.

In frequency domain, Eq. (1) is converted into the following
equation,

G ¼ H � Oþ N ð2Þ

where G, H, O and N are the discrete Fourier transforms of g, h, o
and n, respectively, the operator � stands for the component-wise
multiplication.

Image deconvolution is the inverse process of image blurring.
The algorithms can be divided into two categories in terms of
whether the PSF is known, i.e., non-blind and blind image deconvo-
lution. In some special applications such as remote sensing, the PSF
can be measured in advance and the only unknown variable that
needs to be solved is the latent image [1,2], which is non-blind
deconvolution. However, in most cases, we have to estimate both
the PSF and the latent image from the blurred image and this is
the implication of blind deconvolution.

Unfortunately, even non-blind image deconvolution is inher-
ently ill-posed, which means it is very difficult to obtain a restored
image free of noise and ringing artifacts. This is mainly because the
PSF is low pass in frequency domain, while the main components
of the noise and the Gibbs effect concentrate in the high frequency
region, they tends to be amplified in the direct inverse process
[3–5]. In blind image deconvolution, the PSF is unknown and the
situation will be even worse [6]. To obtain a stable solution, various
regularized methods have been proposed, e.g., the Tikhonov regu-
larization [7–9], the total variation (TV) regularization [10–14] and
the regularization using sparse priors [15–17].

Till now, most of the researches consider the Gaussian noise
model which results in a quadratic fidelity term in the optimization
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problem [18]. However, in some fields such as the astronomical
observation and the medical imaging, the noise follows Poisson
distribution [19], and it is unreasonable to be modeled with the
Gaussian distribution. The most commonly used approach to
restore the blurred images contaminated by Poisson noise is the
classic Richardson–Lucy (RL) algorithm [4,5] which is essential an
special case of the Expectation–Maximization (EM) method [20].
Just as mentioned above, due to the ill-posedness of the problem,
the result of the RL algorithm is usually of low quality, thus
regularization is necessary.

However, to solve the resulted regularized deconvolution prob-
lem under the condition of Poisson noise is not an easy task. In
[21,22], the authors propose to use the EM algorithm and until
now it is still the most widely used scheme. E.g., in [23], the
authors propose to use the Tikhonov regularization. In [14,24,25],
the authors use the TV regularization to restore the blurred micro-
scope image. In [26], the authors propose an algorithm with an
adaptive TV regularization. While in [27], a TV regularized step is
integrated into each EM step to suppress the negative artifacts.
In [28], the sparse natural image gradient prior is used for regular-
ization. In [29], the authors design a Gaussian Markov random field
for regularization and adopt a piecewise function to adjust the
penalty strength. In [30], the authors adopt a Gaussian distribution
to model the differences between the gradients of the blurred and
latent images and combine it with an edge mask to suppress the
negative artifacts. In [31], the Huber–Markov random field regular-
ization is used. All the listed methods depend on the EM algorithm.
However, experimental results show that they cannot always
converge to good results and are not of high executive efficiency.
One popular way for speeding up is to use parallel computing
enabled by many-core processers [32–34]. However, we focus on
designing new efficient algorithm in this paper.

In recent years, some very efficient optimization algorithms
have been introduced for image restoration under the assumption
of Gaussian noise. E.g., in [35,36], the authors respectively design
the Bregman iterative algorithm and the Split Bregman algorithm
to solve the l1-norm regularized problems in image denoising
and compressed sensing. To attack the more difficult problem
due to Poisson noise, some researchers have tried to draw on ideas
from these methods. In [37], the authors use the split Bregman
algorithm, while in [38,39], the variable splitting and augmented
Lagrangian algorithm is adopted. The two methods are of high effi-
ciency and the restored images are of high quality, which makes
them become the foundation and guidance of many recent
researches [40–45].

In this paper, we focus on the non-blind TV regularized decon-
volution and design a very efficient method to restore the blurred
image contaminated by Poisson noise. In [46], the authors propose
an optimization algorithm which adopts the well-known variable-
splitting and penalty technique, it runs very fast and can reach
restored image with very high quality. In [16], the same algorithm
is applied to the lp-norm (0:5 6 p 6 0:8) regularized deconvolution
and proven to be very successful. We learn from the approach and
use the variable splitting technique to divide the problem into two
sub-problems: one is a modified version of the TV regularized
deconvolution presented in [46], and the other is a simple convex
optimization problem. Experimental results show that the pro-
posed method runs very fast, with only a few iterations it can reach
results which is comparable with that of some state of the art
methods.

The arrangement of the paper is as follow. In Section 2, we
formulate the problem to be solved and make a necessary intro-
duction to some important related methods. In Section 3, we make
a detailed description of the proposed algorithm. In Section 4, we
take experiments to compare our approach with some state of
the art methods. Finally in Section 5, a conclusion is made.

2. Problem formulation and related work

In Bayesian probabilistic framework, non-blind image deconvo-
lution can be modeled by maximum a posteriori (MAP) estimation
of the latent image given the blurred, i.e.,

o ¼ argmax
o

PðojgÞ
¼ argmax

o
PðgjoÞPðoÞ ð3Þ

where the terms PðgjoÞ and PðoÞ denote the prior distributions of
noise and the latent image, respectively. With negative logarithmic
operation, Eq. (3) is converted into the following equation:

o ¼ argmin
o

f� ln½PðgjoÞ� � ln½PðoÞ�g ð4Þ

In view of the topic of the paper, we adopt the Poisson noise
model and suppose that the elements of the random variable n
are independent and identically distributed, then

PðgjoÞ ¼
YN
i¼1

exp½�ðhoÞi�ðhoÞgii
gi

ð5Þ

� ln½PðgjoÞ� ¼ LðoÞ ¼
XN
i¼1

fðhoÞi � gi ln½ðhoÞi� þ lnðgiÞg ð6Þ

where i is the element index, N denotes the total number of the
elements in each variable.

To model the term � ln½PðoÞ�, the TV regularization is adopted,
i.e.,

� ln½PðoÞ� ¼ TVðoÞ ¼
XN
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd1oÞi þ ðd2oÞi

q
ð7Þ

where d1 and d2 represent convolution matrices of the horizontal
and vertical derivative operators, respectively.

Bringing Eqs. (6) and (7) into Eq. (4), we obtain that

o ¼ argmin
o

k
2

XN
i¼1

fðhoÞi � gi ln½ðhoÞi�g þ
XN
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd1oÞi þ ðd2oÞi

q
ð8Þ

Furthermore, just like in [37,38], we introduce an indicator
function iRþN ðoÞ to impose the non-negativity constraint on the

estimate, i.e.,

iRþN ðoÞ ¼
0 if o 2 Rþ

N

þ1 if o R Rþ
N

(
ð9Þ

The final optimization problem to be solved is expressed by the
following equation, which is proper, lower semi-continuous, and
convex [38].

o¼ argmin
o

k
2

XN
i¼1

fðhoÞi�gi ln½ðhoÞi�gþ
XN
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd1oÞiþðd2oÞi

q
þ iRþN ðoÞ

ð10Þ
Since in Section 4, we will compare our approach with the

methods in [37,38,42], and also because the three methods are of
many similarities, here we make some brief descriptions to help
the readers understand the difference between them.

In [37,38], the authors use the split Bregman method and the
augmented Lagrangian method to solve the problem in Eq. (10)
and named their optimization schemes PIDSplit+ and PIDAL-TV,
respectively. However, because of the close relationship between
the split Bregman method and the augmented Lagrangian method,
the optimization procedures are similar, the difference concen-
trates upon the strategies of how to convert the complicated
problem into easier sub-problems. In Figs. 1 and 2, the iterative
steps of the two algorithms are given, we can see that they all
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