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a b s t r a c t

A matching method is presented for images with projective distortion based on transform invariant low-
rank textures (TILT). In the method, the problem of matching images with projective distortion is first
reduced to a problem of matching two rectified images just with scaling and translation distortions via
TILT. Then a point-feature based matching method is employed to establish the corresponding points
between the two rectified images. This is different from some traditional methods that try to directly seek
local affine or projective invariants from input images. Moreover, no prior knowledge on the epipolar
geometry is required in the proposed method. An automatic low-rank texture region detection method
is presented to make the method more applicable in practice. Additionally, a new descriptor is con-
structed by combining a proposed geometric shape descriptor and the traditional SIFT descriptor to fur-
ther improve the correct matching rate. Experimental results demonstrate the validity of the proposed
method.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Image matching is an approach to identify the corresponding
points in two images of the same scene taken at different times,
from different sensors or from different viewpoints [1]. It has been
widely applied in many computer vision and pattern recognition
tasks, including object recognition [2,3], image stitching [4], broad-
cast video analysis [5,6], and 3D reconstruction [7–9]. Image
matching methods have been previously developed [10–16]. They
are very effective at finding matches in images with a limited num-
ber of distortions, such as similarity or affinity. However, real
images often include more general distortions. In fact, real images
with distortion that is well approximated by projective distortion
are common.

If we restrict ourselves to planar scenes, the projective distor-
tion between two images could be described by a plane projective
transformation [17,18], i.e.,
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where the homography matrix H is a 3� 3 non-singular matrix. In

(1), p ¼ ½x; y;1�T denotes the homogenous coordinates of a point in
the first image with coordinates ðx; yÞT , while p0 ¼ ½x0; y0;w0�T
denotes the homogenous coordinates of the corresponding point
in the second image with coordinates
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As discussed in [17], the projective transformation is a general
non-singular linear transformation of homogeneous coordinates
and combines the affine transformation with projectivity. Accord-
ingly, the problem of matching images with projective distortion is
more challenging than that of matching images with similarity or
affine transformation.

Some approaches to the matching of images with projective dis-
tortions have been published in recent works, among which the
local-invariant based methods are one of the most popular
categories. Furthermore, one of such methods is based on the
assumption that the projective transformation can be locally
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approximated by a similarity or affine transformation. In these
cases, some scale or affine invariants could be applied, such as
the Scale Invariant Feature Transform (SIFT) [19], the Affine-SIFT
(ASIFT) [20], and the method of Maximally Stable Extremal Regions
(MSER) [21]. However, in some cases the projective transformation
cannot be approximated by a similarity or affine transformation.
Some projective invariants have also been proposed to overcome
this problem, which are defined on point sets [18,22], on sets com-
posed both from points and straight lines [23,24] or on a shape
basis [25].

In addition to those using local invariants for image matching,
some methods were presented which employed geometric con-
straints among correspondences [26–29]. These methods first
defined a proper measure of the geometric consistency among
point correspondences, and then formulated the image matching
problem as an optimization problem [23]. Usually, these methods
achieve higher performance, but also have higher computational
complexity. Moreover, an accurate estimation of the epipolar
geometry is usually required in these methods [26,27], either
through prior knowledge of the configuration or through a few
strong matches to estimate the fundamental matrix.

In the past few years, sparse representation and low-rank rep-
resentation [30–32] have attracted significant attention in the field
of computer vision and image processing. More especially, Zhang
et al. [33] proposed a new tool, transform invariant low-rank tex-
tures (TILT), based on sparse and low-rank matrix decomposition,
to recover the ‘‘intrinsic” low-rank textures in the 3D scene from
the deformed 2D images. Furthermore, it can remove the deforma-
tion caused by affine or projective transformation to produce a
clean image captured from a front-viewpoint. Their experiments
demonstrated that TILT could effectively and robustly work for a
wide range of regular and near-regular patterns or objects in real
images. So far, it has been successfully applied to many computer
vision tasks, such as text extraction [34], camera calibration [35]
and image rectification [36].

In this paper, we will present a method to address the matching
of ‘‘low-rank texture images1” with projective distortion by using
TILT. Similar to those in [26,27], we first rectify the reference image
and the image to be matched, respectively, to reduce the projective
distortion between the two original input images to some extent.
Then we exploit a point-feature based matching method on the
two rectified images to obtain the final corresponding points. We
achieve the rectification of the input images via TILT, instead of
employing any prior knowledge on the epipolar geometry as in
[26,27]. Experimental results demonstrate that the proposed method
performs better than some existing methods such as SIFT, ASIFT and
MSRE, especially in cases with images experiencing severe projective
distortions.

The main contributions of this paper are as follows: (1) A
matching method for images with projective distortion is proposed
based on TILT. Different from those traditional methods that try to
directly seek local affine or projective invariant features from the
input images, the proposed method reduces the problem of match-
ing images with projective distortion to a problem of matching
images with translation and scale distortions via TILT. Moreover,
it requires no prior knowledge on the epipolar geometry as in
[26,27]. (2) An automatic low-rank texture region detection
method is presented. With the proposed texture region detection
method, the low-rank textures will be automatically, rather than
manually as in [33], selected from the original input images before
they are fed into TILT. (3) A novel descriptor is introduced for each
considered point when the two rectified images are matched. In

addition to the local information from each considered point, the
geometric shape information of the pixels around each considered
point is employed in the proposed descriptor.

The rest of the paper is organized as follows. Section 2 gives a
brief introduction to TILT. In Section 3, the proposed image match-
ing method is described in detail. Experimental results and some
conclusions are given in Sections 4 and 5, respectively.

2. Transform invariant low-rank texture (TILT)

To improve the readability of this paper, the key idea of TILT,
presented in [33], will be reviewed briefly in this section.

Considering a 2D texture image I0, represented by a matrix (also
denoted by I0 for convenience) of orderm1 �m2, it is seen as a low-
rank texture if the rank of the matrix I0 is far less than its smaller
dimension (m1 or m2) [33]. As discussed in [33], although the pla-
nar surfaces or structures in the 3D scene exhibit low-rank tex-
tures, their images do not necessarily have low rank because of
deforming transformations and corruptions.

Given a deformed and corrupted image I of a low-rank texture

I ¼ ðI0 þ EÞ � H�1; ð3Þ
the goal of TILT is to recover the ‘‘intrinsic” low-rank texture I0 and
the transformation H : R2 ! R2. In (3), E denotes the corruptions
and is assumed to be sparse [33]. And I � H denotes the transformed
version of the image I using the transformation matrix H.2 Mathe-
matically, the problem of TILT is formulated as

min
I0 ;E;H

rankðI0Þ þ ckEk0 s:t: I � H ¼ I0 þ E; ð4Þ

where kEk0 denotes the l0-norm of the matrix E (i.e., the number of
the non-zero entries in the matrix E), and c > 0 is a weighting
parameter that trades off the importance of the rank of the texture
and the sparsity of the error.

The non-convex rank and l0-norm minimization problems in (4)
can be, respectively, relaxed by the convex nuclear-norm and
l1-norm minimization [33,37]. The nonlinear constraint function
I � H ¼ I0 þ E can also be linearized as I � H þrIDH ¼ I0 þ E, where
rI is the Jacobian of the image I with respect to the transformation
parameters.3 Thus the problem in (4) reduces to the following
convex optimization problem

min
I0 ;E;H

kI0k� þ ckEk1 s:t: I � H þrIDH ¼ I0 þ E; ð5Þ

where k � k� denotes the nuclear-norm of a matrix and is defined
as the sum of its singular values. k � k1 denotes the l1-norm of a
matrix and is defined as the sum of the absolute values of its
entries. The optimization problem in (5) can be effectively solved
by using an iterative linearization scheme. More details are pro-
vided in [33].

Fig. 1 illustrates some results of TILT. As shown in Fig. 1, the
ranks of the image matrices for the recovered textures are less than
those of the image matrices for the deformed images. In addition to
the recovered low-rank textures, the local distortion transforma-
tions between the deformed low-rank textures and their corre-
spondingly recovered ones can also be obtained by using TILT. As
shown in Fig. 1(d)–(f), the deformed low-rank textures will be
approximately rectified to some new ones by these local transfor-
mations. Accordingly, a coarsely rectified image will also be
obtained when the local transformation is applied to the whole

1 As discussed in [33], the low-rank texture images generally denote those
containing large a number of regular or symmetrical structures.

2 For example, if H denotes a projective transformation in (1), then ðI � HÞðx; yÞ may
be computed as I h11xþh12yþh13

h31xþh32yþh33
; h21xþh22yþh23
h31xþh32yþh33

� �
.

3 Strictly speaking, as discussed in [33], rI is a 3D tensor: it gives a vector of
derivatives at each pixel whose length is the number of the parameters in the
transformation H. When rI is multiplied by another matrix or vector, it contracts in
the obvious way which should be clear from the context.
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