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a b s t r a c t

In this study we propose a simple primal–dual method for total variation minimization problems. A
predictor–corrector scheme to the dual variable is used in our algorithms and convergence of the method
is proved. We also show that the iterative scheme has Oð1=NÞ convergence rate in the ergodic sense,
where N denotes the iteration number. Numerical results including image deblurring and computerized
tomography reconstruction demonstrate the efficient of the new algorithms.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following total variation (TV)
image restoration model:

min
x

a
2
kAx� bk2 þ kxkTV ; ð1Þ

where x 2 X is the original image, k � kTV is the TV norm.
X ¼ Rn; X ¼ X � X are finite dimensional vector spaces equipped
with an inner product h�; �i and the Euclidean norm k � k. A is a pos-
sibly large and ill-conditioned matrix representing a linear trans-
form, such as blurring operator, Radon transform. b is the
degraded image or data. a > 0 is a weighting parameter. If A is an
identity matrix, then the problem (1) is the well-known Rudin–
Osher–Fatemi denoise model [34]. The total variation of x has the
following equivalent dual form:

kxkTV ¼ max
y2X

rxTy ¼ max
y2X

� xTr � y; ð2Þ

where y 2 fX : jyj � 1g is the dual variable. r is gradient operator
and bounded. r� is the divergence operator and also bounded.
Using the dual formulation of the TV norm, the objective function
of (1) can be written as

min
x

max
y2X

Qðx; yÞ ¼ a
2
kAx� bk2 � xTr � y; ð3Þ

Some ideas from the duality were proposed first by Chan et al.
[9], later by Chambolle [7]. Chambolle’s project algorithm has been
very popular for total variation image denoising. Based on the
method, there are so many total variation minimization
algorithms. In [46], the authors proposed a nonmonotone
Chambolle gradient projection algorithm. They used the well
known Barzilai–Borwein stepsize instead of the constant time
stepsize in Chambolle’s method. Further, they adopt adaptive
nonmonotone line search proposed by Dai and Fletcher [16] to
guarantee the global convergence. Thus, the approach cannot be
directly applied to solve the minimax problem of (3).

A benchmark algorithm for the problem (1) is the alternating
direction method of multipliers (ADMM) proposed in [21] or
[20]. This algorithm has shown to be very efficient and useful for
a large class of convex separable programming problems. The
famous split Bregman algorithm [22] is also equivalent to ADMM.
In [8], the authors shown that their primal–dual algorithm was
equivalent to the preconditioned version of the ADMM [18]. An
Oð1=NÞ efficiency estimate of ADMM has been established in
[25,26,35] and many relevant references. However, recently, Chen
et al. [12] proved that ADMM like methods do not directly extend
to problems involving multi-block convex minimization problems.
Davis and Yin introduce a new operator-splitting scheme for solv-
ing a variety of problems that are reduced to a monotone inclusion
of three operators and give the simplest extension of the classic
ADMM from 2 to 3 blocks of variables in the paper [15]. Tseng
[38] and Nemirovski [28] proposed some prox methods for con-
vex–concave optimization problem (3) which have a convergence
rate of Oð1=NÞ, where their methods are provided that the gradi-
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ents are Lipschitz continuous. We know that the optimal rate of
any first order method is Oð1= ffiffiffiffi

N
p Þ for general nonsmooth objective

functions. Although it is not improvable in general, Nesterov
[29,30] recently study show that the optimal rate is able to
improve to Oð1=NÞ by exploring the special structure of the objec-
tive function. Beck and Teboulle [5] proposed the famous fast iter-
ative shrinkage-thresholding algorithm by the forward–backward
splitting. Using the Nesterov’s technique [31], their method has
an improved complexity result of Oð1=N2Þ which is an optima first
order method for nonsmooth problems. Combettes and Pesquet
[13] and Bot et al. [6] proposed primal–dual splitting algorithms
for finding zeros of maximal monotone operators [2]. In [14], Davis
analyzed a general monotone inclusion problem that captures a
large class of primal–dual splittings as a special case and firstly
shown the nonergodic convergence rates in the literature.

The organization of this paper is as follows. In Section 2, we
illustrate our motivation of algorithmic design and show our new
method. Then, we prove its convergence in Section 3. In Section 4,
we give some extensions and discuss our scheme from proximal
point algorithm perspective. In Section 5, some numerical results
are given to illustrate the efficiency of the method. Finally, the con-
clusion is given.

2. Related work and proposed method

In this section, we present some related work for solving the
problem (1) and (3) and give two new primal–dual algorithms.

2.1. Related work

Let B be gradient operator r, the problem (1) can be expressed
as

min
x

a
2
kAx� bk2 þ kBxk1: ð4Þ

By introducing a new intermediate variable z, The uncon-
strained optimization problem (4) is reformulated as

min
x;z

a
2
kAx� bk2 þ kzk1; s:t: z ¼ Bx: ð5Þ

For solving the problem (5), the iterative scheme of ADMM is

xkþ1 ¼ arg min
x

a
2 kAx� bk2 þ hkk;Bx� zki þ b

2 kBx� zkk2;
zkþ1 ¼ arg min

z
kzk1 þ hkk;Bxkþ1 � zi þ b

2 kBxkþ1 � zk2;
kkþ1 ¼ kk þ bðBxkþ1 � zkþ1Þ;

8>><
>>: ð6Þ

where kk is the Lagrange multiplier and b > 0 is a penalty parame-
ter. We refer to this as an implicit algorithm. Instead of applying the
augmented Lagrangian method (ALM) in [27,32] directly to (5),
ADMM splits the subproblem of ALM in the Gauss–Seidel way such
that the variables x and z can be minimized individually in alternat-
ing order.

Obviously, we need to compute the matrix of ðaATAþ bBTBÞ�1

about the x subproblem of (6) which is quite time consuming when
the dimension is large. In order to solve this issue, Zhang et al. [47]
proposed a unified primal–dual algorithm framework based on
Bregman iteration. The general idea of their algorithm is to replace
the augmented Lagrangian primal minimizations xkþ1 and zkþ1 of
(6) by proximal-like iterations. More precisely, the algorithm can
be described as follows:

xkþ1 ¼ arg min
x

a
2kAx�bk2 þhkk;Bx� zkiþ b

2kBx� zkk2 þ 1
2kx� xkk2R1 ;

zkþ1 ¼ arg min
z

kzk1 þhkk;Bxkþ1 � ziþ b
2kBxkþ1 � zk2 þ 1

2kz� zkk2R2 ;
kkþ1 ¼ kk þbðBxkþ1 � zkþ1Þ;

8>>><
>>>:

ð7Þ

where R1; R2 are positive semi-define matrices. Their proposed
algorithm can be classified as split inexact Uzawa (SIU) methods.

If we choose R1 ¼ 1
h � aATA� bBTB;R2 ¼ 0; 0 < h < 1

kaAAþbBTBk ; b > 0.

(7) can be further expressed as:

xkþ1 ¼ xk � hðaATðAxk � bÞ þ bBTðBxk � zk þ kk
b ÞÞ;

zkþ1 ¼ shrinkðBxkþ1 þ 1
b kk;

1
bÞ;

kkþ1 ¼ kk þ bðBxkþ1 � zkþ1Þ;

8><
>: ð8Þ

where shrinkðt;lÞ=sign(t)�maxfjtj � 1
l ; 0g and signð�Þ is the sign

function. In this case, the step corresponds to a one-step gradient
descend and it is very efficient since it does not involve any operator
inverting. We can also notice that this is a explicit algorithm. This
type of approach is named generalized or proximal alternating
direction method of multipliers. Convergence rate has been dis-
cussed in [19,40].

As analyzed in [8,18,48], an optimal solution x� of the problem
(1) can be obtained through a saddle point of Qðx; yÞ which is
defined by the Eq. (3). So more and more scholars have proposed
some primal–dual algorithms for total variation image restoration
problems (3). In [48], Zhu and Chan firstly proposed the famous
primal–dual hybrid gradient (PDHG) algorithm as follows:

ykþ1 ¼ PXðyk þ skrxkÞ;
xkþ1 ¼ xk � hkðaATðAxkþ1 � bÞ � r � ykþ1Þ;

(
ð9Þ

where the projection operate PXð�Þ is defined by

PXðyÞ ¼ arg minfkz� yk2 : z 2 Xg;
and sk; hk are adaptive stepsize. For A is the matrix representation
of a space-invariant blurring operator K, the Fourier transform of
matrix multiplication by A becomes pointwise multiplication in
the frequency domain. Hence, the second equation of (9) can be effi-
ciently solved by

xkþ1 ¼ F�1 Fðxk þ hr � ykþ1Þ þ haFðKÞ� � FðbÞ
1þ haFðKÞ� � FðKÞ

� �
; ð10Þ

where Fð�Þ and F�1ð�Þ are the fast Fourier transform (FFT) and
inverse FFT operators, respectively, \ � " denotes the complex conju-
gate, and \� " is the pointwise multiplication operator. Though the
algorithm is quite fast, the convergence is not proved. In [24], He
et al. showed that PDHG algorithm with constant step sizes is
indeed convergent if one of the functions of the saddle-point prob-
lem is strongly convex. But this condition of convergence is too
strong to apply in most of image processing fields. Bonettini and
Ruggiero [3] established the convergence of a general primal–dual
method for nonsmooth convex optimization problems. In their
paper, they showed that the convergence of the scheme can be con-
sidered as an �-subgradient method on the primal formulation of
the variational problem when the steplength parameters are a pri-
ori selected sequences. PDHG algorithm is the special case of their
scheme.

Chambolle and Pock [8] proposed a primal–dual extrapolation
algorithm (named CP) as follows:

ykþ1 ¼ PXðyk þ sr�xkÞ;
xkþ1 ¼ xk � hðaATðAxkþ1 � bÞ � r � ykþ1Þ;
�xkþ1 ¼ 2xkþ1 � xk;

8><
>: ð11Þ

where sh < 1
8. They showed that the convergence rate of this algo-

rithm is Oð1=NÞ. In [23], He and Yuan gave a novel study on these
primal–dual algorithms from the perspective of contraction per-
spective. The method simplified the existing convergence analysis.

In [36], Tseng proposed a solution method for primal dual prob-
lem that alternated between a proximal step and a projection-type
step. The splitting scheme for solving (3) is
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