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a b s t r a c t

The generalization of mathematical morphology to multivariate vector spaces is addressed in this paper.
The proposed approach is fully unsupervised and consists in learning a complete lattice from an image as
a nonlinear bijective mapping, interpreted in the form of a learned rank transformation together with an
ordering of vectors. This unsupervised ordering of vectors relies on three steps: dictionary learning, man-
ifold learning and out of sample extension. In addition to providing an efficient way to construct a vec-
torial ordering, the proposed approach can become a supervised ordering by the integration of pairwise
constraints. The performance of the approach is illustrated with color image processing examples.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical Morphology (MM) is a nonlinear approach to
image processing based on the application of lattice theory to
spatial structures in images. The construction of morphological
operators requires the definition of a complete lattice structure,
i.e., an ordering between the elements to be processed. With the
acceptance of complete lattice theory, it is possible to define mor-
phological operators for any type of multivariate image data once a
proper ordering is established [1]. However, if MM is well defined
for binary and gray scale images, there exists no general admitted
extension that permits to perform morphological operations on
multivariate data since there is no natural ordering on vectors.
Indeed, it is difficult to define an effective ranking of vectors in
arbitrary vector spaces as well as determining the infimum and
the supremum between vectors of more than one dimension.
Therefore, the extension of mathematical morphology to multi-
variate images is a very active field. We refer the reader to
[2,3,1] for a comprehensive review of vector morphology. Several
recent approaches have been proposed in literature for e.g., color
and hyperspectral images [4–10].

This paper introduces a systematic approach towards the
construction of complete lattices for any kind of multivariate data.
Following recent approaches [8,9], we propose to learn, in an
unsupervised manner, the construction of a complete lattice from
the values of an image. To do so, we rely on the theoretical

framework of h-orderings [11], suitable for the definition of com-
plete lattices. This framework requires the definition of a bijective
mapping operator, and we propose to define the latter by nonlinear
manifold learning directly from the set of vectors of the image
under consideration. This problem being practically too computa-
tionally demanding, we propose a three-step strategy towards
the construction of the mapping.

The paper is organized as follows. In Section 2, we explain in
details the difficulty of the definition of complete lattices in vectors
spaces. The properties of orderings and the associated taxonomy
[12] are recalled, and the concept of complete lattices is introduced
as well as how mathematical morphology operators operate on the
latter. We detail what orderings are relevant for morphological
processing of multivariate vectors and why the framework of
h-ordering is a very appealing approach. Then we show different
interpretations of this framework and interpret it as a rank
transform. Section 3 presents our approach for the learning of a
complete lattice. First, a reduced lattice is constructed with the
computation of a dictionary. Second, this dictionary is used to con-
struct an unsupervised ordering by nonlinear dimensionality
reduction. Third, this ordering is extended to all the points of the
initial lattice by the Nyström extension, and the complete lattice
is obtained. In Sections 4 and 5 we show how the proposed
approach can be modified to either construct supervised orderings
or adapt the ordering to several images. Section 6 considers the
case of associating patches vectors to pixels and shows how
our approach can be naturally used to obtain an innovative
patch-based formulation of morphological operators. Last section
concludes. The interest of the approach is illustrated all throughout

http://dx.doi.org/10.1016/j.jvcir.2015.12.017
1047-3203/� 2016 Elsevier Inc. All rights reserved.

q This paper has been recommended for acceptance by M.T. Sun.
E-mail address: olivier.lezoray@unicaen.fr
URL: https://lezoray.users.greyc.fr

J. Vis. Commun. Image R. 35 (2016) 220–235

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate / jvc i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2015.12.017&domain=pdf
http://dx.doi.org/10.1016/j.jvcir.2015.12.017
mailto:olivier.lezoray@unicaen.fr
https://lezoray.users.greyc.fr
http://dx.doi.org/10.1016/j.jvcir.2015.12.017
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci


the paper with various experiments and comparisons with state-
of-the-art approaches.

2. Complete lattices in Rn

Mathematical morphology is a nonlinear approach to image
processing that relies on a fundamental structure, the complete
lattice ðL;6Þ [13]. The complete lattice theory is widely accepted
as the appropriate algebraic basis for MM. If this has the advantage
of unifying previous approaches developed for binary and grays-
cale morphology, complete lattices also make it possible to gener-
alize the fundamental concepts of morphological operators to a
wider variety of image types.

2.1. Orderings

Since in complete lattices the concept of order plays a central
role, we begin by recalling its key properties. Given x; y; z 2 A, a
binary relation R on a set A is:

� reflexive if xRx;
� antisymmetric if xRy and yRx ) x ¼ y;
� transitive if xRy and yRz ) xRz;
� total if xRy or yRx.

The binary relation R is a pre-ordering if R is reflexive and tran-
sitive. R is a partial ordering if R is an antisymmetric pre-ordering.
Finally, R is a total ordering if it is a total partial ordering. Barnett
[12] has proposed to classify ordering relations that operates on

general vectors v ¼ v1; . . . ;vnð ÞT (i.e., the set A is Rn) into four
groups: marginal (M-ordering), conditional (C-ordering), partial
(P-ordering) and reduced (R-ordering).

M-orderings. Orderings are performed on every component of
the given vectors leading to a component-wise ordering:

8v; v0 2 Rn; v �M v0 () 8i 2 f1; . . . ;ng;v i 6 v 0
i: ð1Þ

Such an ordering is a partial ordering.
C-orderings. Vectors are ordered by means of their marginal

components:

8v; v0 2 Rn; v �C v0 () 9i 2 f1; . . . ;ng;
ð8j < i;v j ¼ v 0

jÞ ^ ðv i 6 v 0
iÞ: ð2Þ

The most well-known C-ordering is the lexicographic ordering that
is a total ordering [14].

P-orderings. The ordering partitions the given vectors into
equivalence classes with respect to rank or extremeness [12]. The
most popular is the aggregated distance ordering that consists in
associating each vector with the sum of its distances from the
other vectors of a family fv1; . . . ; vng:

8v; v0 2 Rn; v �P v
0 ()

Xn
k¼1

dðv; vkÞ 6
Xn
k¼1

dðv0; vkÞ: ð3Þ

Such an ordering is a total pre-ordering.
R-orderings. Vectors are first reduced to scalar values using a

mapping h : Rn ! R. Vectors are then ordered with respect to the
scalar order of their projection:

8v; v0 2 Rn; v �R v
0 () hðvÞ 6 hðv0Þ ð4Þ

Two main families of mappings h can be defined wether they are
based on distances or projections [2]. According to the chosen trans-
formation it is possible to obtain a total pre-ordering (h non-
injective) or even a total ordering (h injective) [15].

Now that we have presented the concept of orderings, we can
introduce the concept of complete lattices.

2.2. Complete lattices

A partially order setA is a set associated with a binary relation R
that is reflexive, antisymmetric and transitive. To simplify the fur-
ther notations, we will replace R by 6.

In a partially ordered setA, the least majorant _X (called supre-
mum) of a subset X#A is defined as an element v0 2 A, such that:
(1) vi 6 v0; 8vi 2 X, and (2) if 8vi; vj 2 X, such that vi 6 vj 6 v0,
then vj ¼ v0. One defines the greatest minorant ^A (called infi-
mum) of X dually. Additional information can be found in [16,17].

A partially ordered set A is an inf semi-lattice (resp. sup semi-
lattice) if every two-element subset fX1;X2g in A has an infimum
X1 ^X2 (resp. a supremum X1 _X2) in A. If A is both an inf and
a sup lattice, then it is called a lattice.

Finally, a lattice is called a complete lattice when every non-
empty subset X#A has an infimum ^X and a supremum _X.

2.3. MM and complete lattices

It has been shown in [13] that any mathematical morphology
operator must operate into the complete lattice structure of the
object space. A space L endowed with a (partial or total) ordering
relation6 is called a complete lattice [18], and is denoted by ðL;6Þ.
As this was exposed in the previous section, this means that every
non-empty subset P#L has both an infimum ^P and a supremum
_P. Following the notation of [7], we say that the smallest element
(minimum) vk 2 L is an element contained in all others elements
of L, that is, vl 2 L ) vk 6 vl. We denote the minimum of L by ?.
Equivalently, the largest element (maximum) vk 2 L is an element
that contains every element of L, that is, vl 2 L ) vl 6 vk. We
denote the maximum of L by >.

In this context, functions are modeled by mapping their domain
space X, into a complete lattice L, i.e., f : X ! L. Within this
model, morphological operators are represented as mappings
between complete lattices in combination with matching patterns
called structuring elements that are subsets of X.

We call a dilation an operator d : L ! L that commutes with the
supremum and preserves > the lowest element of L, i.e., d is a dila-
tion iff for every collection fvigi2I of elements of L:

dð_i2IviÞ ¼ _i2IdðviÞ; ð5Þ
and dð?Þ ¼?.

Similarly, we call erosion an operator � : L ! L that commutes
with the infimum and preserves ?, the maximum of L, i.e., � is an
erosion iff for every collection fvigi2I of elements of L:

�ð^i2IviÞ ¼ ^i2I�ðviÞ; ð6Þ
and �ð>Þ ¼ >. As quoted in [19], dilation and erosion basically rely
on three concepts: a ranking scheme, the extrema derived from this
ranking and finally the possibility of admitting an infinity of oper-
ands (i.e., the two first are the ingredients of a complete lattice).

For any erosion �, we can find a unique dilation d such that
8vi; vj 2 L : dðvjÞ 6 vi () vj 6 �ðviÞ. A pair of erosion and dilation
satisfying the above relation is called an adjunction. Given an
adjunction ð�; dÞ on a complete lattice, the following results can
be easily proven [20]: (1) �d P I and d� 6 I, (2) �d� ¼ � and
d�d ¼ d, (3) / ¼ �d is an opening, (4) c ¼ d� is a closing.

To conclude, if one want to perform morphological operators on
some data, one has first to look for a complete lattice for the set of
values of the data since the ordering of the lattice enables to com-
pare its elements. For example, if we consider the classical case of
gray-level images f : X ! R, the corresponding complete lattice is
ðR;6Þ with 6 the usual comparison operator in R. However, if
we now consider multivalued images f : X ! Rn;n > 1, it becomes
problematic to find an ordering relation for the vectors of Rn, due
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