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a b s t r a c t

In this paper a new classification method called locality-sensitive kernel sparse representation classifica-
tion (LS-KSRC) is proposed for face recognition. LS-KSRC integrates both sparsity and data locality in the
kernel feature space rather than in the original feature space. LS-KSRC can learn more discriminating
sparse representation coefficients for face recognition. The closed form solution of the l1-norm minimi-
zation problem for LS-KSRC is also presented. LS-KSRC is compared with kernel sparse representation
classification (KSRC), sparse representation classification (SRC), locality-constrained linear coding (LLC),
support vector machines (SVM), the nearest neighbor (NN), and the nearest subspace (NS). Experimental
results on three benchmarking face databases, i.e., the ORL database, the Extended Yale B database, and
the CMU PIE database, demonstrate the promising performance of the proposed method for face recog-
nition, outperforming the other used methods.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Face recognition is one of the most widely investigated prob-
lems in pattern recognition and computer version. Recently, sparse
representation (also called sparse coding) has become a currently
very active research topic in signal processing, pattern recognition
and computer version due to its plausive mathematical statistical
theory [1]. Sparse representation is initially developed as an exten-
sion to traditional signal representations such as Fourier and wave-
let representations. So far, sparse representation has been
successfully applied to solve many practical problems in signal
processing, computer vision, pattern recognition, etc. For instance,
in signal and image processing fields, sparse representation is used
for signal recovery and acquisition [2], image representation [3],
and image sequence denoising [4]. In the emerging field of com-
pressive sensing (CS) [5,6], as a very attractive theory challenging
Shannon-Nyquist sampling theorem, sparse representation aims
to recover the signal from the compressed measures in a most eco-
nomical way. Especially, sparse representation classification (SRC)
has been successfully applied for face recognition and obtained
very promising performance on face recognition [7,8]. The main
idea of SRC is that a test face image is represented as a sparse linear
combination over the dictionary formed with all the training face

images, and the class label of the test sample is then identified
by evaluating which class yields the minimum the residual
between itself and the reconstruction constructed by training sam-
ples of this class. A recent survey of sparse representation can be
found in [9].

The discriminating ability of SRC depends on the quality of the
dictionary. Ideally, from the point of view of the l1-norm minimiza-
tion algorithms the atoms of the dictionary corresponding to dif-
ferent classes should be separated from each other. In other
words, the effectiveness of SRC is limited by an important assump-
tion that data points from different classes are not distributed
along the same radius direction [10,11]. Note that this assumption
is reasonable for face recognition since the images from the same
subject under different intensity levels are still considered to
belong to the same class. Nevertheless, the assumption is not
always effective when dealing with some real-world data, e.g.,
the Iris dataset from the UCI machine learning archive, in which
classes are stratified along the radius direction. Therefore, SRC
could not identify a test sample if it has the same vector direction
as the training samples belonging to two or more classes. In other
words, SRC suffers from the drawback of losing its discriminating
ability when classifying data with the same direction distribution.

To overcome the drawback of SRC, in recent years some preli-
minary efforts have been devoted to develop kernel sparse repre-
sentation classification (KSRC) [10–14]. Essentially, KSRC [10–14]
uses the kernel trick [15] to find sparse representation coefficients
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in a high-dimensional feature space rather than in the original fea-
ture space. It’s worth pointing out that the presented KSRC in [10] is
a little different from [12–14] since it integrates the described KSRC
[12–14] with dimensionality reduction in the kernel feature space.
In machine learning area, the kernel trick is originally used to
develop support vector machines (SVM) [16], kernel Fisher discrim-
inant analysis (KFDA) [17], and kernel principal component analysis
(KPCA) [18], since it can be easily used to generalize a linear algo-
rithm into a nonlinear algorithm. These kernel-based learning
methods recall the kernel trick to map the original data into a
high-dimensional feature space (also called kernel feature space)
by using a nonlinear mapping, and then perform linear processing
problems in this high-dimensional feature space with the inner
products. The inner products in the high-dimensional feature space
are computed by using some implicit mapping kernel function.
Similarly, KSRC maps the data into a high-dimensional feature
space by using some nonlinear mapping associated with a kernel
function and then implements the SRC algorithm in this high-
dimensional feature space. As a kernel method, KSRC is capable of
capturing the nonlinear relationships of data, and thus performs
better than SRC for classification.

Although KSRC has been successfully applied for image classi-
fication and face recognition since it integrates the kernel
method and the SRC method, KSRC is not able to capture the
locality structure of data. In pattern recognition area, data local-
ity is an important issue in the problems of K-nearest-neighbor
(KNN) classifier [19], data clustering [20], dimensionality reduc-
tion [21,22], image classification [23], etc. Note that, the recently
reported work [22,23] have proved that in the problem of sparse
coding data locality is more essential than sparsity since inte-
grating data locality with the original sparse coding methods
yields more effective sparse coding coefficients. Motivated by
the advantage of data locality, in this paper we integrate KSRC
with data locality in the kernel feature space rather than in
the original feature space, and develop an extension of KSRC,
called locality-sensitive kernel sparse representation classifica-
tion (LS-KSRC).

The remaining of this paper is organized as follows: Section 2
reviews kernel sparse representation classification (KSRC) in brief.
Section 3 provides the proposed LS-KSRC method in detail. Exper-
imental results and analysis are given in Section 4. Section 5 offers
the concluding remarks and discussions.

2. Review of kernel sparse representation classification

2.1. Sparse representation classification

In this section, we will simply introduce the principal of SRC [7]
based on the CS theory. Essentially, SRC is based on the linearity
assumption that the whole set of training samples form a dictio-
nary, and then the recognition problem is cast as one of discrimi-
natively finding a sparse representation of the test image as a
linear combination of training images by solving the l1-norm opti-
mization problem.

Given a set of training samples with dimensionality d (xi, yi)|xi

e Rd, yi e {1, 2, � � �, c}, i = 1, 2, � � �, N, where yi is the class label of
input data xi, c is the number of classes, the goal of SRC is to use
the given c-class training samples to exactly predict the class label
yi of xi.

Now let the jth class training samples form columns of a matrix
Xj ¼ ½xj;1;xj;2; � � � ; xj;nj

� 2 Rd�nj ; j ¼ 1;2; � � � ; c, where xj,i is the ith
training sample of the jth class, and nj denotes the number of the
jth class training samples. Then, for all training samples a new
sample matrix X can be expressed as

X ¼ ½X1;X2; � � � ;Xc� ð1Þ

In SRC, a test sample x could be represented linearly by all the
training samples

x ¼ Xaþ e ð2Þ

where a is the coefficient vector and e is the approximation error.
The linearity assumption in SRC implies that the coefficient vector
a is expected to be zero except some of those associated with the
correct class label of the test sample. To achieve the coefficient vec-
tor a, the following l1-norm minimization problem should be
solved.

min
a
kak1; subject to kx� Xak2

2 6 e ð3Þ

This is a convex optimization problem and can be solved by qua-
dratic programming. So far, a variety of efficient algorithms have
been proposed to solve the l1-norm minimization of Eq. (3), such
as l1-magic [24], l1-ls [25], spectral projected gradient method
(SPGL1) [26] and NESTA (a shorthand for Nesterov’s algorithm) [27].

Once the coefficient vector a is found, the test sample x could
be classified in terms of the reconstruction errors (residuals)
between x and its approximations. The jth approximation of the
test sample x is achieved by using only the coefficients belonging
to the jth class. The class label of the test sample x is then assigned
to the one with the minimum residual. The detailed classification
procedure of SRC [7] is summarized in Algorithm 1:

Algorithm 1. Sparse representation classification (SRC)

(1) Input: the matrix of all training samples X, and a test
sample x

(2) Solve the l1-norm minimization problem in Eq. (3)
(3) Compute the residuals by using the samples associated

with the jth class by using rjðxÞ ¼ kx� Xajk2
2

(4) Output: the class label y of the given test sample
x:y = arg min j=1,2,� � �,crj(x)

2.2. Kernel sparse representation classification

By means of integrating the kernel trick and the SRC method,
kernel sparse representation classification (KSRC) [10–14] is devel-
oped as a nonlinear extension of SRC. Essentially, KSRC aims to
seek sparse representation coefficients in the kernel feature space
rather than in the original feature space.

Assuming that there exists a nonlinear kernel mapping / for
each input data point x:

/ : Rd ! F ; x#/ðxÞ ð4Þ

With the nonlinear mapping /, we can map the input data point
xi e Rd into some potentially high-dimensional feature space F . In
this kernel feature space F an inner product h,i could be defined
for a properly chosen /, which gives rise to a so-called reproducing
kernel Hilbert space (RKHS). In RHKS, a kernel function k(xi, xj) is
defined as:

kðxi; xjÞ ¼ h/ðxiÞ;/ðxjÞi ¼ /ðxiÞT/ðxjÞ ð5Þ

where k is known as a kernel. There are three commonly used
kernel functions, i.e., the linear kernel, polynomial kernel as well
as the Gaussian kernel.

The linear kernel function is defined as

kðxi; xjÞ ¼ xT
i xj ð6Þ

The polynomial kernel function is defined as

kðxi; xjÞ ¼ ðxT
i xjÞ

r ð7Þ
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