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a b s t r a c t

We present a new shape descriptor that are robust to deformation and capture part details. In our frame-
work, the shape descriptor is generated by (1) using running angle to transforming a shape into a 2-D
description image in the position and scale space and (2) performing circular wavelet-like sub-band
decomposition of this 2-D description image based on its periodic convolution with orthogonal kernel
functions. Each sub-band is described by the histogram of its decomposition coefficients. To capture
unique and discriminative part, we compare the decomposition coefficients across sub-band to detect
singularity in the position and scale space. The singularity information is encoded with a tree of binary
bits. The coded feature vectors of all sub-bands and singularity trees are pooled together to form the
descriptor of the shape. The shapes are classified with linear SVM. Our performance evaluations on sev-
eral public datasets, demonstrating that the proposed method significantly outperforms state-of-the-art
methods.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Shape description, matching and classification are fundamental
problems in computer vision with important applications like
image retrieval, object detection and recognition. Compared to
other image features, shape is invariant to lighting conditions
and changes in object colors and texture [1]. However, shape con-
tours obtained from object segmentation often exhibits a large
degree of intra-class of variations due to different view points,
changing illumination, segmentation errors, shape parts articula-
tion variations, non-rigid deformations, etc. [2]. Furthermore,
shape contours of objects often have strong inter-class ambiguities.
For example, tree leaves or animals of similar species, are often
very similar to each other, except some small or even tiny distin-
guishable features embedded in a large amount of intra-class
shape contour variations.

For example, Fig. 1 shows two types (Group-1 and Group-3) of
leaves from the Swedish Leaf Database [3]. We can see that the
inter-class ambiguity is very strong. Human eyes, even experts,
cannot tell them apart.

In the literature, a number of efficient shape descriptors and
shape similarity measures have been developed for representing,
matching, classifying, and recognizing shapes. One typical

approach for shape similarity measure is to construct some physi-
cal shape models and then measure the amount of energy required
to deform one shape contour into another [4]. Latecki et al. [5]
developed an elastic partial shape matching algorithm to model a
possible non-rigid shape deformation. A hierarchical matching
approach has been developed in [6]. It has been observed that this
type of approaches are often very sensitive to strong, local shape
variations. Extracting invariant descriptors of the shape is another
important approach. In order to capture the local features, Belongie
et al. [7] introduce the 2-dimensional non-linear histogram, Shape
Context (SC), to describe the distance and angles between contour
points. Since SC cannot solve the problem of matching articulated
shape, Ling and Jacobs [8] modified SC by using the geodesic dis-
tance inner shape instead of Euclidean distance to represent
shapes, which is called Inner Distance Shape Context (IDSC). Bend-
ing invariants [9] for 2D and 3D shapes can be achieved by using
geodesic distances. For both 2D and 3D shape analysis, topology
invariants have been developed in [10]. To capture the inherent
part structure of the shape contour, skeleton based approaches,
particularly the shock graph method in [2], have been developed.
Given a shape and its boundary, shocks are defined as curve seg-
ments of the medial axis with monotonic flow. The shocks are then
organized into a shock graph, which forms a hierarchical represen-
tation of the shape and naturally captures its part structure. These
invariant descriptors have demonstrated their effectiveness in han-
dling intra-class variations. However, as observed in [11], invari-
ants to larger groups of deformation often come at a price of
reduced inter-class discriminative.
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Apart from the existing efforts in the literature to construct
shape descriptors and similarity measures and then use nearest
neighbor approaches for shape classification [2,6,12,8,13], in this
work, we propose a global shape descriptor and a learning-based
approach for shape classification, aiming to develop trainable clas-
sifiers for shape classification and recognition. During the past sev-
eral years, we have witnessed the success of data-driving and
machine learning approaches in computer vision applications,
e.g., object detection, classification, and recognition [14,15]. These
approaches are able to discover and construct important features
to resolve inter-class ambiguities during classification. We believe
that this learning and discovery capability is also important and
beneficial in shape-based domain. However, we observe that
shapes are much different from conventional image or video data
for object detection and recognition. Shape contour is basically a
1-D data. An enclosed contour has no starting point. The shape fea-
ture should be invariant or insensitive under changes in scale, rota-
tions, and non-rigid deformations. How to extract low-level from
shapes for successful learning and training of accurate and robust
shape classifiers remains a challenging and interesting research
problem.

In this work, we propose to develop a global multi-scale embed-
ded description scheme for shape classification. We are mainly
motivated by the following observation: our human vision system
often examines and compares shapes at different scales. Some clas-
ses of shapes can be well separated by shape features at coarse
scales. However, for shapes of some closely related classes, we
have to examine or discover detailed features at fine scales. To
develop the multi-scale embedded shape description, we construct
a dense description of shapes or object contours using a low-level
feature called running angle, transforming the whole shape into a
2-D shape description image in the geodesic index and scale space,
as Fig. 2. We then perform circular wavelet-like sub-band decom-
position of this shape descriptor image based on its periodic convo-
lution with orthogonal kernel functions. We then extract invariant
features from these decomposition coefficients and pool them
across sub-band to form a dense description of the shape. The
shape is classified with linear SVM. Our performance evaluations

on public datasets demonstrate that the proposed method signifi-
cantly outperforms state-of-the-art methods.

The rest of the paper is organized as follows. Section 2 presents
the 2-D shape description image. Section 3 presents our global
multi-scale shape descriptor and the SVM-based shape classifica-
tion framework. The experimental results are presented in Sec-
tion 4. Section 5 concludes the paper.

2. Multi-scale 2-D shape description image and circular sub-
band decomposition

In this work, we focus on enclosed shape contours. We uni-
formly sample the contour and denote this sequence of point sam-
ples by

C ¼ fCðsÞ ¼ ðxs; ysÞj1 6 s 6 Ng: ð1Þ

s is the geodesic distance along the curve from the starting position.
Later on, we will see that our algorithm does not depend on this
starting position.

Next, we will compute the so-called running angle at each con-
tour sample. As illustrated in Fig. 3, at point CðsÞ, we consider a
looking-out window of size w, which consists of w samples before
CðsÞ and w samples after CðsÞ. We compute the centroids of contour
samples at both sides as follows:

Pðs;wÞ ¼
X½s�1�N

½s�w�N

CðsÞ; Q ðs;wÞ ¼
X½sþw�N

½sþ1�N

CðsÞ: ð2Þ

The running angle of the contour at index s with a looking-out win-
dow size w is defined to be the angle between vectors Pðs;wÞ � CðsÞ
and CðsÞ � Q ðs;wÞ. We denote this angle by hðs;wÞ. When the win-
dow size w is large, the running angle h will capture more global
information around the point CðsÞ. When w is small, h will focus
on local and more detailed structures of the shape. This represents
a 2-D image containing multi-scale information, with each image
point taking a value between ½0;2p�. We refer to this image as the
running angle image. Fig. 2 shows the running angle images for
three contour samples from the MPEG-7 shape dataset. We can

Fig. 1. Two groups of leaves, Group-1 (the first row) and Group 3 (the second row) from the Swedish Leaf Database [3].
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