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a b s t r a c t

Conventional local preserving projection (LPP) is sensitive to outliers because its objective function is
based on the L2-norm distance criterion and suffers from the small sample size (SSS) problem. To
improve the robustness of LPP against outliers, LPP-L1 uses L1-norm distance metric. However, LPP-L1
does not work ideally when there are larger outliers. We propose a more robust version of LPP, called
LPP-MCC, which formulates the objective problem based on maximum correntropy criterion (MCC).
The objective problem is efficiently solved via a half-quadratic optimization procedure and the compli-
cated non-linear optimization procedure can thereby be reduced to a simple quadratic optimization at
each iteration. Moreover, LPP-MCC avoids the SSS problem because the generalized eigenvalues
computation is not involved in the optimization procedure. The experimental results on both synthetic
and real-world databases demonstrate that the proposed method can outperform LPP and LPP-L1 when
there are large outliers in the training data.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

There are many dimensionality reduction methods used to
reduce the number of input variables to simplify data analysis
problems, which play an important role in machine learning, infor-
mation retrieval, pattern recognition and so on. Linear methods
such as principal component analysis (PCA) [1], linear discriminant
analysis (LDA) [2] and (2D)2PCALDA [3] have demonstrated excel-
lent performance in many fields. These methods are dimensional-
ity reduction algorithms ‘thinking globally’ and can successfully
discover low dimensional manifold on the premise of Gaussian
data. At the same time, they are easy to implement and their
optimizations are well understood and efficient. However, these
methods are inadequate for embedding the nonlinear manifolds
and cannot preserve the local structure of data.

A number of nonlinear dimensionality reduction techniques
have been developed to address the aforementioned problem. Some
representative nonlinear manifold learning methods include Iso-
map [4], locally linear embedding (LLE) [5], Laplacian Eigenmaps
[6] and Hessian Eigenmaps [7–9]. These methods preserve local
properties of the given data by constructing a graph representation

of the data points and have demonstrated good performances on
some databases. However, many nonlinear manifold learning
methods yield maps that are defined only on the training data sam-
ples and how to evaluate the maps on the novel test data samples is
unclear [10]. For dealing with this problem, some linear versions of
these methods are proposed such as neighborhood preserving pro-
jection (NPP) [11], neighborhood preserving embedding (NPE) [12]
and locality preserving projection (LPP) [10,13]. LPP is a linear
approximation of Laplacian Eigenmaps and provides a way to the
projection of the novel test data samples. Therefore, LPP not only
have the locality preserving property but also is a linear technique.
However, LPP is sensitive to outliers because its objective function
is based on the L2-norm distance criterion and suffers from the
small sample size (SSS) problem. VDE [14] is proposed to overcome
the SSS problem of LPP by adopting the maximum margin criterion.
Moreover, more manifold learning algorithms are proposed in
recent years [15–21].

Recently, many researchers focus on improving the robustness
of dimensionality reduction methods. One of the efforts is search-
ing for more robust distance metric because it is well known that
L2-norm-based distance criterion is sensitive to outliers for the
square operation. A number of L1-norm-based dimensionality
reduction methods are proposed to alleviate the negative effect
of outliers [22–27]. These methods, such as PCA-L1 [23], LDA-L1
[26] and LPP-L1 [27], adopt a greedy strategy to learn a set of pro-
jection vectors for optimizing a L1-norm-based objective function

http://dx.doi.org/10.1016/j.jvcir.2014.08.004
1047-3203/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: fujin-zhong@163.com (F. Zhong), ldf125@home.swjtu.edu.cn

(D. Li), jszhang@home.swjtu.edu.cn (J. Zhang).

J. Vis. Commun. Image R. 25 (2014) 1676–1685

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate / jvc i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2014.08.004&domain=pdf
http://dx.doi.org/10.1016/j.jvcir.2014.08.004
mailto:fujin-zhong@163.com
mailto:ldf125@home.swjtu.edu.cn
mailto:jszhang@home.swjtu.edu.cn
http://dx.doi.org/10.1016/j.jvcir.2014.08.004
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci


and have demonstrated better robustness to outliers than the cor-
responding L2-norm-based versions. He et al. adopted correntropy
to measure the construction error and proposed a robust PCA
based on maximum correntropy criterion (termed as PCA-MCC)
[28]. PCA-MCC uses a half-quadratic optimization algorithm to
compute the correntropy objective function and has outperformed
robust rotational-invariant PCAs based on L1-norm [28]. On the
other hand, some recent works [29,30] present that one key effort
is looking for efficient optimization algorithms in robust learning
methods.

In this paper, we adopt correntropy to measure the similarity
between all pairs of data points in the feature space for improving
the robustness of LPP to outliers. Since the objective function of the
proposed method is based on maximum correntropy criterion
(MCC) which is a useful measurement to handle nonzero mean
and non-Gaussian noise with large outliers, we denote the new
LPP method as LPP-MCC. The correntropy-based objective function
of LPP-MCC can be optimized efficiently by half-quadratic optimi-
zation framework in an iterative manner, so the complex optimiza-
tion problem can be solved by a standard optimization method.
Therefore, the idea of LPP-MCC can be easily generalized to other
graph embedding algorithms. It is worthwhile to highlight three
important advantages of LPP-MCC as follows: (1) LPP-MCC is more
robust to outliers than the conventional LPPs based on L2-norm or
L1-norm. (2) The optimal solutions are obtained via half-quadratic
optimization framework which can be achieved by a simple itera-
tive standard optimization method. (3) It avoids the small sample
size problem that LPP often encounters because of the generalized
eigenvalues problem.

The remainder of this paper is organized as follows. In Section 2,
we briefly give a quick review of LPP-L2 and LPP-L1. In Section 3,
we propose a robust LPP method based on maximum correntropy
criterion and present its optimization procedure using a half-qua-
dratic technique. In Section 4, the experimental results are shown
to demonstrate the robustness of the proposed method to outliers.
Finally, the paper is summarized in Section 5.

2. LPP and LPP-L1

For convenience, we present in Table 1 the important notations
used in this paper and their descriptions.

Let X = [x1, . . . , xN] 2 Rm�N be the given training samples, where
N is the number of samples and xi denotes an m-dimensional col-
umn vector. LPP aims to find an optimal projection matrix

W = [w1, . . . , wn] 2 Rm�n (n < m) whose columns {wk}(k = 1, � � �, n)
constitute the base of the n-dimension subspace. Projecting the
sample xi onto W yields an n-dimension vector yi, i.e. yi = WTxi,
where yi is called the feature of xi in the n-dimension subspace.
The optimal projection vector w 2 Rm�1 can be gained by solving
the following constrained optimization problem as:

w ¼ arg min
w

JL2ðwÞ ¼ arg min
w

XN

i;j

ðwT xi �wT xjÞ
2sij

s:t: wT XDðwT XÞT ¼ 1

ð1Þ

where sij is the similarity measure between xi and xj, and all sij con-
stitute the similarity matrix S. D is a diagonal matrix and its entries
are Dii =

P
jsij. A possible way of defining sij is heat kernel [31]:

sij¼
expð�kxi�xjk2

=tÞ; if xi is among k nearest neighbors of xj

or xj is among k nearest neighbors of xi;

0 otherwise:

8><>:
ð2Þ

Minimizing the objective function of (1) is an attempt to ensure
that, if xi and xj are close, then yi and yj are close as well [10]. In
other words, for large similarity between xi and xj, the distance
between yi and yj should be so small that the objective function
is minimized [27,32]. The optimization of (1) can be reduced to
the following generalized eigenvalues problem [10,13]:

XLXT w ¼ kXDXT w ð3Þ

where L is the Laplacian matrix which is formed by subtracting S
from D, i.e. L = D � S. The projection vectors {wk}(k = 1, � � � , n) are
given by the minimum eigenvalues solutions. However, if XDXT is
singular, the solution of LPP is unstable. That it is caused by the
so called small sample size problem [27].

Because the L2-norm-based LPP is sensitive to outliers, L1-norm
is applied in (1) to substitute the L2-norm [27]. Thus, the objective
function of LPP-L1 is formulated as the following:

w ¼ arg min
w

JL1ðwÞ ¼ arg min
w

XN

i;j

jwT xi �wT xjjsij

s:t: wT XDðwT XÞT ¼ 1:

ð4Þ

However, the optimization of (4) is very difficult because it con-
tains the absolute value operation, which is nonlinear. In [27], the
solution of LPP-L1 is approximated by maximizing a new objective
problem as:

w ¼ arg max
w

JL1ðwÞ ¼ arg max
w

XN

i;j

jwT xi �wT xjjð1� sijÞ

s:t: wT w ¼ 1:

ð5Þ

The optimization procedure of (5) is similar to that of PCA-L1
[24]. When the first projection vector is extracted, the procedure
can easily be extended to learn more projection vectors by apply-
ing the same optimization procedure greedily to the remainder of
the projected samples [25].

3. Robust LPP based on MMC

Although LPP-L1 can alleviate the negative effect of outliers to
some extent, it is not sufficient for handling nonzero mean and
non-Gaussian noise with large outliers. Liu et al. have made
enough theoretical analysis to indicate that MCC is a robust mea-
surement to handle nonzero mean and non-Gaussian noise with
large outliers [33]. In addition, He et al. have validated the robust-
ness of MCC by developing PCA-MCC [28] and MCC-based face rec-
ognition [34]. Considering the relation of PCA and LPP, this paper

Table 1
Notations used in this paper and their descriptions.

Notation Description

N Sample size
m Sample dimensions
X Sample data matrix
xi The i-th sample
yi The feature of xi

D Diagonal matrix and Dii =
P

jsij

L Laplacian matrix and L = D � S
pij The auxiliary variable
P The auxiliary variable matrix
|�| Absolute value
n Subspace dimensions
W Optimal projection matrix
wk The k-th column vector of W
sij Similarity measure between xi and xj

S Similarity matrix
kr (�) Kernel function that satisfies Mercer’s theory
E (�) Mathematical expectation
A, B Two random variables
g(x) Gaussian kernel
||�||2 L2 norm
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