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a b s t r a c t

While recent techniques for discriminative dictionary learning have demonstrated tremendous success
in image analysis applications, their performance is often limited by the amount of labeled data available
for training. Even though labeling images is difficult, it is relatively easy to collect unlabeled images
either by querying the web or from public datasets. Using the kernel method, we propose a non-linear
discriminative dictionary learning technique which utilizes both labeled and unlabeled data for learning
dictionaries in the high-dimensional feature space. Furthermore, we show how this method can be
extended for ambiguously labeled classification problem where each training sample has multiple labels
and only one of them is correct. Extensive evaluation on existing datasets demonstrates that the
proposed method performs significantly better than state of the art dictionary learning approaches
when unlabeled images are available for training.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Sparse and redundant signal representations have recently
gained much interest in computer vision field [34,12,27]. This is
partly due to the fact that signals or images of interest are often
sparse with respect to some dictionary. These dictionaries can be
either analytic or they can be learned directly from the data. In
fact, it has been observed that learning a dictionary directly from
data often leads to improved results in many practical applications
such as classification and restoration [34,22,6].

While dictionaries are often trained to obtain good reconstruction,
training supervised dictionaries with a specific discriminative criterion
has also been considered. For instance, linear discriminant analysis
(LDA)-based basis selection and feature extraction algorithm for
classification using wavelet packets was proposed by Etemand and
Chellappa [14] in the late nineties. Recently, similar algorithms for
simultaneous sparse signal representation and discrimination have
also been proposed [25,15,24,38,17,18,36,21,37].

Sparse representation and dictionary learning methods for
unsupervised learning have also been proposed. In [33], a method
for simultaneously learning a set of dictionaries that optimally
represent each cluster is proposed. To improve the accuracy of
sparse coding, this approach was later extended by adding a block
incoherence term in their optimization problem [23]. Some of the
other sparsity motivated clustering and subspace clustering meth-
ods include [13,8].

The performance of a supervised classification algorithm is
often dependent on the quality and diversity of training images,
which are mainly hand-labeled. However, labeling images is
expensive and time consuming due to the significant human effort
involved. On the other hand, one can easily obtain large amounts
of unlabeled images from public image datasets like Flickr or by
querying image search engines like Bing. This has motivated
researchers to develop semi-supervised algorithms, which utilize
both labeled and unlabeled data for learning classifier models.
Such methods have demonstrated improved performance when
the amount of labeled data is limited. See [4] for an excellent
survey of recent efforts on semi-supervised learning.

Two of the most popular methods for semi-supervised learning are
Co-Training [2] and Semi-Supervised Support Vector Machines (S3VM)
[32]. Co-Training assumes the presence of multiple views for each
feature and uses the confident samples in one view to update the
other. However, in applications such as image classification, one often
has just a single feature vector and hence it is difficult to apply Co-
Training. S3VM considers the labels of the unlabeled data as additional
unknowns and jointly optimizes over the classifier parameters and the
unknown labels in the SVM framework [3].

Using the kernel trick, several methods have been proposed in the
literature that exploit sparsity of data in the high dimensional feature
space. In these methods, a preselected Mercer kernel is used to map
the input data onto a features space where dictionaries are trained. It
has been shown that such non-linear dictionaries can provide better
discrimination than their linear counterparts [20,30,19].

Motivated by the success of non-linear dictionary learning
methods [20,30], we propose a novel method to learn kernel
discriminative dictionaries for classification in a semi-supervised
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manner. Fig. 1 shows the block diagram of the proposed approach
which uses both labeled and unlabeled data. While learning a
dictionary, we maintain a probability distribution over class labels
for each unlabeled data. The discriminative part of the cost is made
proportional to the confidence over the assigned label of the
participating training sample. This makes the proposed method
robust to label assignment errors.

This paper makes the following contributions:1

1. We propose a discriminative dictionary learning method that
utilizes both labeled and unlabeled data.

2. Using the kernel trick, we extend the formulation for learning
linear dictionaries with labeled and unlabeled data to the non-
linear case. An efficient optimization procedure is proposed for
solving this non-linear dictionary learning problem.

3. We show how the proposed method can be extended to
ambiguously labeled data where each training sample has
multiple labels and only one of them is correct.

In our previous work [30], we developed a supervised non-
linear discriminative dictionary learning method for image classi-
fication. The method proposed in this paper is different from [30]
in that it is a general non-linear semi-supervised dictionary
learning method. The methods proposed for learning dictionaries
form ambiguously labeled data [7] are also different from the one
proposed in this paper. Specifically, in [7] two linear methods are
proposed – one based on soft decision rules and the other based
on hard decision rules. In contrast to linear reconstructive dic-
tionary leaning methods in [7,38], we propose a general discrimi-
native non-linear kernel dictionary learning method for semi-
supervised learning.

The rest of the paper is organized as follows. In Section 2, we
formulate the problem of non-linear dictionary learning with
partially labeled data. The optimization of the proposed frame-
work is presented in Section 3. Experimental results are presented
in Section 4 and Section 5 concludes the paper with a brief
summary and discussion.

2. Problem formulation

In this section, we formulate the optimization problem for
learning discriminative dictionaries with partially labeled data. We
first present the linear formulation. We then extend it to the non-
linear case.

2.1. Linear dictionary learning with partially labeled data

Let Y¼ ½y1;…; yN �ARd�N be the data matrix where d is the
dimension of each data sample yi and N is the total number of
training samples. We assume that the data is partially labeled and
denote the label of the ith sample by li. When the sample yi is not
labeled, we set li to 0, i.e., liAf0;1;…Cg, where C is the total
number of classes.

Our goal is to learn a dictionary DARd�K , where K is the
number of unit norm atoms. We represent this dictionary as the
concatenation of all the classes' dictionary, i.e. D9 ½D1j…jDC � such
that each DcARd�Kc can represent the cth class data well while not
economically representing the other class data. Here, Kc is the
number of atoms in dictionary Dc , and hence, K ¼∑C

c ¼ 1Kc.
Enforcing each Dc to represent only its own class c improves the
discriminative capability of the learned dictionary. We represent
each sample yi by sparse linear combination of dictionary D's
atoms and represent the sparse coefficient of the ith sample by xi.
Furthermore, we denote the coefficient matrix for all the samples
by X, i.e., X9 ½x1;…; xN �.

In order to deal with unlabeled data, we introduce a probability
matrix PARC�N such that each column of P represents the class
distribution of the corresponding data sample. In other words, (c,
i)th element Pci of P denotes the probability of the ith sample
belonging to class c. Hence, by definition,

Pci ¼ 1 if yi is labeled with one class and li ¼ c:

Pci ¼ 0 if yi is labeled with one class and liac:

0rPcir1 if yi is unlabeled or ambiguously labeled: ð1Þ

We denote the probability of all the samples belonging to class c
by a diagonal matrix PcARN�N such that Pcði; iÞ ¼ Pci and the non-
diagonal elements of Pc are set equal to zeros. Also, we define a
matrix Q c91�Pc to denote the probability of all the samples not
belonging to the cth class. Furthermore, we define Psqrt

c and Q sqrt
c

the square root of Pc and Q c, respectively, i.e., Pc ¼ Psqrt
c Psqrt

c and
Q c ¼Q sqrt

c Q sqrt
c . The Frobenius norm and the sparsity promoting ℓ1

norm of a matrix A are denoted as JAJF and JAJ1, respectively.
Equipped with these notations, we formulate the dictionary

learning problem as one of optimizing

J 0ðD;X;PÞ ¼F 0ðY;D;X;PÞþHðX;PÞþλ1 JXJ1; ð2Þ

where

F 0ðY;D;X;PÞ ¼ JY�DXJ2F

þτ1 ∑
C

c ¼ 1
J ðY�DcXcÞPsqrt

c J2F

þτ2 ∑
C

c ¼ 1
JDcXcQ sqrt

c J2F ; ð3Þ

HðX;PÞ ¼ λ2ðtrðSwðX;PÞ�SbðX;PÞÞÞþηJXJ2F ; ð4Þ

and Xc is the coefficient matrix corresponding to the cth class.
Here, the first term of F 0 encourages D to be a good representative
of the data matrix Y without needing any label information. The
second term of F 0 enforces that the cth class dictionary Dc

represents well those samples which are likely to belong to class c.
Note that Psqrt

c is a diagonal matrix and hence the contribution of
each sample in this part of the cost is proportional to the probability
of it having come from the cth class. The third part of F 0 enlarges the
reconstruction error of those samples which are less likely to have
come from the cth class. The parameters τ1 and τ2 control the
discriminative capability of the learned dictionary.

The second term H of J 0 in (2) makes the sparse coefficients of
samples discriminative by decreasing the trace of within-class

Fig. 1. Block diagram illustrating semi-supervised dictionary learning.

1 Preliminary version of this work appeared in [31]. Items 2 and 3 are
extensions to [31].
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