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a b s t r a c t

In this paper, we investigate the use of manifold learning techniques to enhance the separation
properties of standard graph kernels. The idea stems from the observation that when we perform
multidimensional scaling on the distance matrices extracted from the kernels, the resulting data tends to
be clustered along a curve that wraps around the embedding space, a behavior that suggests that long
range distances are not estimated accurately, resulting in an increased curvature of the embedding
space. Hence, we propose to use a number of manifold learning techniques to compute a low-
dimensional embedding of the graphs in an attempt to unfold the embedding manifold, and increase
the class separation. We perform an extensive experimental evaluation on a number of standard graph
datasets using the shortest-path (Borgwardt and Kriegel, 2005), graphlet (Shervashidze et al., 2009),
random walk (Kashima et al., 2003) and Weisfeiler–Lehman (Shervashidze et al., 2011) kernels. We
observe the most significant improvement in the case of the graphlet kernel, which fits with the
observation that neglecting the locational information of the substructures leads to a stronger curvature
of the embedding manifold. On the other hand, the Weisfeiler–Lehman kernel partially mitigates the
locality problem by using the node labels information, and thus does not clearly benefit from the
manifold learning. Interestingly, our experiments also show that the unfolding of the space seems to
reduce the performance gap between the examined kernels.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Graph-based representations have become increasingly popular
due to their ability to characterize in a natural way a large number of
systems which are best described in terms parts and binary relations.
Concrete examples include the use of graphs to represent shapes [5],
metabolic networks [6], protein structure [7], and road maps [8].
However, the rich expressiveness and versatility of graphs comes at
the cost of added complexity and a reduced toolset of available
pattern analysis algorithms. In fact, our ability to analyze data abst-
racted in terms of graphs is severely limited by the restrictions posed
by standard pattern recognition techniques, which require data to be
representable in a vectorial form. There are two reasons why graphs
are not easily reduced to a vectorial form: first, there is no canonical
ordering for the nodes in a graph, unlike the components of a vector.
Hence, correspondences to a reference structure must be established
as a prerequisite. Second, the variation in the graphs of a particular

class may manifest itself as subtle changes in structure. Hence, even if
the nodes or the edges of a graph could be encoded in a vectorial
manner, the vectors would be of variable length, thus residing in
different spaces.

The first 30 years of research in structural pattern recognition have
been mostly concerned with the solution of the correspondence
problem as the fundamental means of assessing structural similarity
[9]. With the similarity at hand, similarity-based pattern recognition
techniques such as the nearest neighbor rule can be used to perform
recognition and classification tasks, or graphs may be embedded in a
low-dimensional pattern space using either multidimensional scaling
or alternative non-linear manifold leaning techniques.

Another alternative is to extract feature vectors from the graphs
providing a pattern-space representation. There are a number of ways
in which this can be done: one approach is to extract structural or
topological features from the graphs under study. Graph spectral
features extracted from the eigenvalues and eigenvectors of the
adjacency or Laplacian matrices have been shown to be effective here
[10,11]. Again, manifold learning techniques have been used in the
literature to provide a way to unfold the pattern space and map the
data onto low-dimensional spaces where the structural classes are
well separated.
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The famous kernel trick [12] has shifted the problem from the
vectorial representation of data, which now becomes implicit, to a
similarity representation. This has allowed standard learning techni-
ques to be applied to data for which no easy vectorial representation
exists. More formally, once we define a positive semi-definite kernel
k : X � X-R on a set X, there exists a map ϕ : X-H into a Hilbert
space H, such that kðx; yÞ ¼ϕðxÞ>ϕðyÞ for all x, yAX. Also, given the
kernel value between ϕðxÞ and ϕðyÞ one can easily compute
the distance between them by noting that JϕðxÞ;ϕðyÞJ 2 ¼ϕðxÞ>ϕ
ðxÞþϕðyÞ>ϕðyÞ�2ϕðxÞ>ϕðyÞ. Thus, any algorithm that can be for-
mulated in terms of dot products between the input vectors can be
applied to the implicitly mapped data points through the direct
substitution of the kernel for the dot product. For this reason, in
recent years pattern recognition has witnessed an increasing interest
in structural learning using graph kernels. However, due to the rich
expressiveness of graphs, this task has also proven to be difficult, with
the problem of defining complete kernels, i.e., ones where the implicit
map ϕ is injective, sharing the same computational complexity of the
graph isomorphism problem [13].

While the graph kernels proposed in the literature provide
effective ways to generate implicit embeddings, there is no guarantee
that the data in the Hilbert space will exhibit better class separation.
This is of course a consequence of the complexity of the structural
embedding problem and the limits for efficient kernel computations
already analyzed by Gärtner et al. [13]. One evidence of this is the fact
that the multidimensional scaling embeddings of several graph
kernels show the so-called horseshoe effect [14] (see Fig. 1), i.e., the
data tends to cluster tightly along a curve that wraps around the
embedding space. This particular behavior is typically produced by a
consistent underestimation of the real distances of the problem, i.e.,
the geodesic distances on the manifold, and it implies that the
data gets placed onto a highly non-linear manifold embedded in the
Hilbert space. The horseshoe is in fact the locus of intersection bet-
ween the manifold and the plane used to visualize the data, and the
high curvature is a result of the dimensionality compression on the
data, which reduces the degrees of freedom of the points and forces
them to cluster along the observed curve. We should also stress that

this behavior can be a consequence of kernel normalization, a
common procedure through which the data points are projected from
the Hilbert space onto the unit sphere. This in turn creates an artificial
curvature of the space that can create or exacerbate the observed
horseshoe effect. Note, however, that while in general the non-line-
arity of the mapping is used to improve local class separability, a large
global curvature can result in a folding of the manifold that can reduce
long range separability.

For this reason, it is natural to investigate the impact of the
locality of distance information on the performance of these kinds
of kernels. To this end, given a set of graphs, we investigate the use
of several manifold learning techniques to embed the graphs onto
a low-dimensional vectorial space, in an attempt to unfold the
embedding manifold, and increase class separation. More specifi-
cally, we investigate the use of four popular non-linear manifold
learning techniques, namely Isomap [15], Laplacian Eigenmaps
[16], Diffusion Maps [17] and Local Linear Embedding [18]. The
selected techniques approach the manifold learning problem from
radically different angles, with Isomap attempting to preserve the
global distances and LLE trying to maintain the local neighborhood
geometry.

Experiments on several standard datasets demonstrate that, as
expected, the improvement is kernel and dataset dependent, with
some kernels and datasets generally gaining very significant improve-
ments in performance, while other not exhibiting significant variation
or even modest reduction. Most importantly, the unfolding of the
manifold invariably reduces the performance gap between the kernels
examined. This suggests that the instances of kernels in the literature
do not differ by any intrinsic difference in descriptive power, but in the
level of warping of the embedding space. See Fig. 2 for an example
where the non-linear mapping to a high-curvature manifold reduces
the linear separability of data.

The remainder of this paper is organized as follows: Section 2
introduces some related work in graph kernels and manifold learning,
while Section 3 illustrates the unwrapping idea and provide a more
in-depth description of the kernels and manifold learning techniques
used in this study. Section 4 illustrates the experimental results, while
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Fig. 1. The MDS embeddings of the shortest-path [1], graphlet [2], random walk [3] and Weisfeiler–Lehman [4] kernels (with h¼ 1;2;3) on the COIL dataset. (a) Shortest-
path, (b) graphlet, (c) random walk, (d) WL1, (e) WL2, (f) WL3.
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