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a b s t r a c t

The grid-based Bayesian tracker employs a novel sample generation and weighting mechanism that
achieves significantly improved visual tracking performance (in terms of accuracy, robustness, and
computational burden) over existing active contour trackers and Monte Carlo trackers. This paper
presents a method to enhance its capability in accommodating the tracking of targets in video with
erratic motion, by introducing adaptation in the motion model and iterative position estimation.
Tracking performance of the resulting algorithm is compared with the grid-based Bayesian tracker in the
context of leukocyte tracking, UAV-based vehicle tracking, and Drosophila larva tracking to demonstrate
its effectiveness in dealing with erratic target movement.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Automated target tracking in real time is crucial to a wide range
of practical video and image applications such as aerial video
surveillance [13] and visual servo control [10]. With efficient
automatic target tracking, a formidable amount of video data
(online or offline) can be processed with high accuracy without
human intervention.

Existing visual tracking algorithms in the literature can be
mainly classified as either deterministic or stochastic [20]. A
deterministic tracker views target tracking as an optimization
problem, with the objective of seeking the minimum of a properly
chosen cost functional. A typical example is the active contour
model [12,17], also called a snake, for which an energy functional is
defined that takes into account the contour's tension and rigidity
(internal energy), as well as the target features of interest (external
energy). An external force generated by the target features in the
spatial domain of an image pushes the contour towards target
features, which correspond to a minimum of the energy func-
tional. Thus the contour evolves to lock onto the desired target. In
this case, tracking is achieved by guiding the contour from its
location in the current frame to the target in the next frame
employing external forces generated by the target features. Var-
ious external forces have been proposed to enhance the capture

range of the traditional active contour [12], e.g., gradient vector
flow [19] and vector field convolution [14].

In the stochastic approach to visual tracking, the problem is
cast into an estimation procedure. The starting point is a state
space model consisting of a state transition equation and a
measurement equation, corrupted by the state and measurement
noise processes, respectively. Due to the randomness of the noise
processes, the tracking problem fits into a Bayesian framework
with a recursive estimation procedure. In each frame, the state
transition equation provides a predicted probability density
function (pdf) of the target state (position, velocity, and accel-
eration) in the next frame from an estimate of its current pdf,
while the measurement equation determines how to update this
prior pdf with a new state measurement to obtain the posterior
pdf. Depending on assumptions imposed on the state space
model, the estimation problem has different solutions. In the
simplest case when the state space model is linear and the noise
processes are Gaussian, the Kalman filter [7,9] provides an
optimal solution to the tracking problem. If the model is allowed
to be nonlinear, the extended Kalman filter (EKF) [18] gives a
Gaussian approximation of the target state distribution by line-
arizing the nonlinear model at local means. In the general case
when the model is nonlinear and the noise processes are non-
Gaussian, particle filters are employed to approximately repre-
sent the density function [1,8].

A particle filter is a sequential Monte Carlo method [3,15,5,6],
which implements a Bayesian filter recursively using Monte Carlo
simulations. The idea is to generate a set of samples (particles)
with associated weights in a random way for the construction of a
probability density function to approximate the posterior density
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of the target state, which is then estimated as a weighted sum of
this set of samples. In particular, two major tasks need to be
accomplished for successful target tracking: target position pre-
diction and target localization. Position prediction involves com-
puting the target position in the next frame (the “predicted
position”) based on estimated positions in current and previous
frames. The localization procedure designates a search region
around the predicted location and estimates the target location
(the “estimated position”) in the next frame using a certain target
feature detection algorithm. For stable and robust tracking perfor-
mance, a large number of samples are usually required, leading to
a substantial computational burden. Such an expense may hinder
its implementation in real-time tracking applications.

In contrast to a particle filter, a Grid-based Bayesian Approach
(GBA) for robust visual tracking has recently been developed in
[16], which proposes a novel method for deterministic sample
generation and sample weighting. The GBA tracker has been
shown to drastically outperform the active contour tracker [17]
or a Monte Carlo tracker [4] in the tracking of leukocytes in vivo
and vehicles observed from unmanned aerial vehicle (UAV) videos.
In particular, its tracking performance is robust to image jitter,
background movement, and image noise and clutter, in terms of
the total number of frames tracked and the number of sequences
with all frames tracked. Tracking accuracy is improved with
significantly reduced average root mean square error (RMSE).
Furthermore, the GBA tracker can be executed at a speed 100
times faster than the other two trackers. Another distinguishing
feature of the GBA tracker is that the target motion model used for
position prediction is capable of dealing with target occlusion.

However, a presumption of the GBA tracker is the smoothness
of the motion trajectory of the target to be tracked. For effective
tracking, the movement of the target cannot be too erratic, i.e., the
change in its velocity cannot be abrupt. This is partly due to the
smoothing effect in the prediction model, which, when the target
is moving erratically, may not generate a prediction that provides
sufficient information for successful tracking. The predicted posi-
tion in the previous frames does not reflect the recent target
motion behavior in this case. In addition, an erratically moving
target may escape from the coverage of the sample grid, thus
getting lost.

As an attempt to cope with erratic target movement, in this
paper we present an Erratic Target Grid-based Tracker (ETGT) to
enhance the capability of the GBA tracker by introducing adapta-
tion in the target motion model and iterative position estimation,
when erratic target movement is detected. We will demonstrate
the improved tracking performance over the GBA tracker [16] in
tracking a single leukocyte in vivo, ground vehicle target observed
from UAV videos, and Drosophila larvae, all undergoing abrupt
changes in motion.

The reminder of the paper is organized as follows. In Section 2,
some preliminaries on the Bayesian tracking approach and the
GBA tracking algorithm in particular are presented. Section 3
describes the ETGT tracking algorithm. Experimental results are
provided in Section 4. Section 5 concludes the paper.

2. Preliminaries

For a Bayesian tracking approach in general, consider the state
transition model (1) and the measurement model (2):

xk ¼ aðxk�1;uk�1Þ ð1Þ

yk ¼ bðxk; vkÞ ð2Þ
where the state variable xk is the real target position, uk�1 is the
state noise process, yk is the measurement of xk, corrupted by the

measurement noise process vk, with k denoting the frame number.
The objective is to compute xkþ1, the target position in the next
frame, based on information from the model and all available
measurements up to the ðkþ1Þ th frame, i.e., y1:kþ1 ¼ fy1;
y2;…; ykþ1g.

The target position xkþ1 is a random variable, and an estimate
is its expected value computed with the so-called posterior
probability density function (pdf) pðxkþ1 jy1:kþ1Þ. In the Bayesian
tracking procedure, pðxkþ1 jy1:kþ1Þ is obtained recursively in two
main steps as briefly outlined below. Let pðxk jxk�1Þ and pðxk jykÞ
denote the state transition pdf and the observation pdf, respec-
tively. The first step involves computing the prior pdf pðxkþ1 jy1:kÞ
based on pðxk jy1:kÞ (computed recursively for the kth frame) and
the transition pdf pðxkþ1 jxkÞ, through the Chapman–Kolmogorov
equation

pðxkþ1 jy1:kÞ ¼
Z

pðxkþ1 jxkÞpðxk jy1:kÞ dxk

This density gives target position prediction. Then with the
measurement of the target position in the ðkþ1Þ th frame, ykþ1,
the prior pdf is updated using Bayes’ law to compute the posterior
pdf as

pðxkþ1 jy1:kþ1Þ ¼
pðykþ1 jxkþ1Þpðxkþ1 jy1:kÞ

pðykþ1 jy1:kÞ
where

pðykþ1 jy1:kÞ ¼
Z

pðykþ1 jxkþ1Þpðxkþ1 jy1:kÞ dxkþ1

In particle filter methods, the continuous pdf function pðxkþ1 j
y1:kþ1Þ is approximated by a discrete, finite set of samples with
associated weights: fsðmÞ

kþ1;w
ðmÞ
kþ1g

M

m ¼ 1
, where sðmÞ

kþ1 is the mth
sample with its associated weight

wðmÞ
kþ1 ¼

p ykþ1 jxkþ1 ¼ sðmÞ
kþ1

� �
PM

i ¼ 1 p ykþ1 jxkþ1 ¼ sðiÞkþ1

� �
and M is the sample size. A weighted average of the samples is
taken as the estimated position of the target, i.e.,

xkþ1 ¼ Epðxkþ 1 j y1:kþ 1ÞðxÞ �
XM
i ¼ 1

wðiÞ
kþ1s

ðiÞ
kþ1

The Grid-based Bayesian Approach (GBA) to visual tracking [16]
is motivated by the idea behind the weighted sampling of the
particle filters. In the GBA tracking framework, a state transition
model is so constructed as to cope with target occlusion and to
obtain a position prediction more robust to image jitter. Around
the predicted position, samples are generated in a deterministic
way by gridding within an ellipsoid. They are weighted according
to their distance to the predicted position and the number of
detected target features (e.g., boundary) after applying some
feature detection algorithm. The sample set with associated
weights is considered as an approximation to the distribution of
the target state variable (i.e., position), and its weighted sum is
computed to be the estimated position. A review of the GBA
tracker is given next.

2.1. Position prediction in the GBA tracker

A state transition model of the target is constructed first, which
predicts its position in the next frame based on the estimated
positions in previous frames. In particular, the following state
transition model is applied

xc;kþ1 ¼ x̂c;kþðx̂c;k� x̂c;k�nÞ=n
yc;kþ1 ¼ ŷc;kþðŷc;k� ŷc;k�nÞ=n ð3Þ

Q. Sang et al. / Pattern Recognition 48 (2015) 3527–35413528



Download English Version:

https://daneshyari.com/en/article/529874

Download Persian Version:

https://daneshyari.com/article/529874

Daneshyari.com

https://daneshyari.com/en/article/529874
https://daneshyari.com/article/529874
https://daneshyari.com

