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a b s t r a c t

This paper proposes a subspace clustering algorithm with automatic feature grouping for clustering
high-dimensional data. In this algorithm, a new component is introduced into the objective function to
capture the feature groups and a new iterative process is defined to optimize the objective function so
that the features of high-dimensional data are grouped automatically. Experiments on both synthetic
data and real data show that the new algorithm outperforms the FG-k-means algorithm in terms of
accuracy and choice of parameters.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As one of the major tasks of data mining, data clustering is a
process that aims to identify homogeneous groups or clusters of
objects from a set of objects. Given a set of multi-dimensional data
points, clustering algorithms can be used to find a partition of the
points into clusters such that the points within a cluster are similar
to each other and the points from different clusters are quite
distinct [1,2]. Data clustering can be applied to a wide range of
areas such as bioinformatics [3], pattern recognition [4], health
care [5], insurance [6], to just name a few.

In the past six decades, many clustering algorithms have been
developed. The k-means algorithm is one of the oldest and most
widely used clustering algorithm [7]. In the k-means algorithm, the
number of clusters is a required input. Given a dataset and a number k
of clusters, the k-means algorithm starts from k initial cluster centers
and then repeats updating the cluster memberships and the cluster
centers until some stop criterion is met [8]. A key problem of the
k-means algorithm and other conventional clustering algorithms is
that they suffer from the curse of dimensionality. In high-dimensional
data, clusters are usually embedded in subspaces of the original data
space and different clusters might be embedded in different sub-
spaces. As a result, these conventional clustering algorithms are not
efficient to deal with high-dimensional data.

To address this problem, subspace clustering algorithms have
been developed to identify clusters embedded in subspaces of the
original data space. Agrawal et al. proposed a clustering algorithm
called CLIQUE to find dense subspace clusters [9]. Parsons et al.
presented a review of subspace clustering algorithms developed
up to that time [10]. In [11], Huang et al. proposed a subspace
clustering algorithm called W-k-means by introducing feature
weighting to the k-means algorithm. Gan and Wu proposed the
FSC algorithm and proved its convergence [12]. In [13], Jing et al.
proposed a subspace clustering algorithm named EWKM by
extending the k-means algorithm to include weight entropy in
the objective function. In [14], Domeniconi et al. proposed the LAC
algorithm, which is similar to EWKM. Kriegel et al. presented a
comprehensive survey of high-dimensional data clustering,
including subspace clustering [15]. In [16], Deng et al. extended
the EWKM algorithm to a new subspace clustering algorithm
named EEW-SC by considering between-cluster separation. In
[17], Favaro et al. treated the subspace clustering problem as a
rank minimization problem and proposed a closed-form solution.
Müller et al. studied the scalability issue of clustering high-
dimensional data and proposed a density-based subspace cluster-
ing algorithm [18]. Elhamifar and Vidal presented a sparse sub-
space clustering (SSC) algorithm using the idea of sparse repr-
esentation [19]. The correctness of the SSC algorithm was proved
by Soltanolkotabi et al. [20]. Timmerman et al. proposed a sub-
space k-means algorithm by modeling the centers and cluster
residuals in reduced spaces [21]. In [22], Mcwilliams and Montana
proposed a predictive subspace clustering (PSC) algorithm by
assuming that each cluster can be approximated well by a linear
subspace estimated by a principal component analysis. Zhu et al.
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proposed online subspace clustering algorithm to clustering data
streams [23]. In [24], the authors proposed a subspace clustering
algorithm based on affinity propagation.

The aforementioned subspace clustering algorithms can be
divided into two categories: hard subspace clustering and soft
subspace clustering. A hard subspace clustering algorithm deter-
mines the exact subspaces in which clusters are embedded. A soft
subspace clustering algorithm assigns weights to features and
identify subspaces with large weights. One major challenge of the
soft subspace clustering algorithms mentioned above is that the
individual feature weights are sensitive to noise and missing
values. To address this problem, Chen et al. introduced the idea
of assigning weights to feature groups and proposed a new
subspace clustering algorithm called FG-k-mean [25]. The FG-k-
means algorithm is shown to outperform the k-means algorithm
and several other subspace clustering algorithms such as W-k-
means [11], LAC [14], and EWKM [13].

However, the FG-k-means algorithm requires that the feature
groups are determined before the data is clusterized. In many
cases, we do not know the group information of the features that
describe a high-dimensional dataset. In this paper, we propose a
subspace clustering algorithm, referred to as AFG-k-means, that is
able to determine the feature groups automatically during the
clustering process. The AFG-k-means algorithm extends the
k-means algorithm by incorporating automatic feature group
selection.

The remaining of the paper is organized as follows. In Section 2,
we review the FG-k-means algorithm. In Section 3, we present the
new subspace clustering algorithm, i.e., the AFG-k-means algo-
rithm. In Section 4, we demonstrate the performance of the AFG-
k-means algorithm using both synthetic data and real data. Section
5 concludes the paper with some remarks.

2. Related work

In this section, we give a brief introduction to the FG-k-means
algorithm [25]. To describe these algorithms, we let X ¼
fx1; x2;…; xng be a dataset of n points, each of which is described
by a set of m features: A¼ fA1;A2;…;Amg.

In the FG-k-means algorithm, the features that describe the
high dimensional data are divided into feature groups, each of
which is associated with a group weight. Within a feature group,
each feature is also associated with a feature weight. The two
types of weights are updated in the clustering process to identify
important feature groups and individual features in each cluster.

Suppose that the set of features is divided into T groups
G¼ fG1;G2;…;GT g such that Gta∅, Gt \ Gs ¼∅ for 1rt; srT ;
tas, and ⋃T

t ¼ 1Gt ¼ A. To cluster X into k clusters, the FG-k-means
algorithm minimizes the following objective function:

PðU; Z;V ;WÞ ¼
Xk
l ¼ 1

Xn
i ¼ 1

XT
t ¼ 1

X
jAGt

uilwltvljdðxij; zljÞ
2
4

þλ
XT
t ¼ 1

wlt log ðwltÞþη
Xm
j ¼ 1

vlj log ðvljÞ
3
5 ð1Þ

subject to the following conditions:

Xk
l ¼ 1

uil ¼ 1; i¼ 1;2;…;n; uilAf0;1g ð2aÞ

XT
t ¼ 1

wlt ¼ 1; l¼ 1;2;…; k; wlt40 ð2bÞ

X
jAGt

vlj ¼ 1; l¼ 1;2;…; k; t ¼ 1;2;…; T ; vlj40; ð2cÞ

where U ¼ ðuilÞn�k is a hard partition matrix, Z ¼ fz1; z2;…; zkg is a
set of k cluster centers, V ¼ ðvljÞk�m and W ¼ ðwltÞk�T are the two
weight matrices mentioned before, λ and η are two positive
parameters, and dðxij; zljÞ is a distance measure between the i-th
object and the center of the l-th cluster in the j-th feature. If the j-
th feature is numeric, the distance measure is the square Euclidean
distance. If the j-th feature is categorical, the distance measure is
just the simple matching distance.

In the FG-k-means algorithm, the objective function given in
Eq. (1) is optimized as follows. Given Z ¼ Ẑ , V ¼ V̂ , and W ¼ Ŵ , the
hard partition matrix U that minimizes the objective function is
given by

uil ¼
1 if DilrDis for 1rsrk;
0 if otherwise;

(
ð3Þ

where Dis ¼
PT

t ¼ 1 ŵst
P

jAGt
v̂sjdðxij; ẑsjÞ. Given U ¼ Û , V ¼ V̂ , and

W ¼ Ŵ , the set Z of cluster centers that minimizes the objective
function is given by

zlj ¼
Pn

i ¼ 1 ûilxijPn
i ¼ 1 ûil

: ð4Þ

Given U ¼ Û , Z ¼ Ẑ , and W ¼ Ŵ , the weight matrix V that mini-
mizes the objective function is given by

vlj ¼
exp �Elj

η

� �
P

hAGt
exp �Elh

η

� �; ð5Þ

where Elj ¼
Pn

i ¼ 1 ûilŵltdðxij; ẑ ljÞ with t being the index of the
feature group to which the j-th feature is assigned, i.e., AjAGt .
Given U ¼ Û , Z ¼ Ẑ , and V ¼ V̂ , the weight matrix W that mini-
mizes the objective function is given by

wlt ¼
exp �Flt

λ

� �
PT

s ¼ 1 exp �Fls
λ

� �; ð6Þ

where Flt ¼
Pn

i ¼ 1 ûil
P

jAGt
v̂ljdðxij; ẑ ljÞ.

Note that in the FG-k-means algorithm, the feature group G is
given as an input. The feature group weights are automatically
calculated by the algorithm.

3. The AFG-k-means algorithm

In this section, we present the AFG-k-means algorithm that
incorporates automatic feature grouping in the clustering process.
To describe the algorithm, we let X ¼ fx1; x2;…; xng be a dataset of
n points, each of which is described by a set of m numerical
features: A¼ fA1;A2;…;Amg. Let k be the desired number of
clusters and let T be the desired number of feature groups.

The objective function of the AFG-k-means algorithm is defined
as

Q ðU; Z;W ;G;V ;ΓÞ ¼
Xk
l ¼ 1

Xn
i ¼ 1

uil

Xm
j ¼ 1

w2
ljðxij�zljÞ2þϵ1

Xk
l ¼ 1

Xm
j ¼ 1

w2
lj

þβ
XT
t ¼ 1

Xm
j ¼ 1

gjt
Xk
l ¼ 1

γ2ltðwlj�vltÞ2þϵ2
Xk
l ¼ 1

XT
t ¼ 1

γ2lt

0
@

1
A;

ð7Þ
where U ¼ ðuilÞn�k is an n� k matrix of binary numbers. If point xi

belongs to the l-th cluster, then uil ¼ 1; otherwise, uil ¼ 0.
Z ¼ fz1; z2;…; zkg is a set of k cluster centers. W ¼ ðwljÞk�m is a k�
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