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a b s t r a c t

Following advances in compressed sensing and high-dimensional statistics, many pattern recognition
methods have been developed with ℓ1 regularization, which promotes sparse solutions. In this work, we
instead advocate the use of ℓp (2Zp41) regularization in a group setting which provides a better trade-
off between sparsity and algorithmic stability. We focus on the simplest case with squared loss, which is
known as group bridge regression. On the theoretical side, we prove that group bridge regression is
uniformly stable and thus generalizes, which is an important property of a learning method. On the
computational side, we make group bridge regression more practically attractive by deriving provably
convergent and computationally efficient optimization algorithms. We show that there are at least
several values of p over (1,2) at which the iterative update is analytical, thus it is even suitable for large-
scale settings. We demonstrate the clear advantage of group bridge regression with the proposed
algorithms over other competitive alternatives on several datasets. As ℓp-regularization allows one to
achieve flexibility in sparseness/denseness of the solution, we hope that the algorithms will be useful for
future applications of this regularization.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Regularization is an important issue in pattern recognition for
developing learning algorithms with high predictive power. In this
work, we consider algorithms for solving a regularization problem
of the following form:

min
x

1
2
‖y�Ax‖22þgðxÞ: ð1Þ

Here, we restrict our attention to the squared loss function and
norm-based regularization g (x). Extensions to other convex loss
functions, such as logistic, may be obtained similarly.

In learning theory, such a regularization is known to avoid
over-fitting and thus it allows the developed algorithm to general-
ize. Regularization has been an important principle in machine
learning and statistics [1], especially when one is faced with
increasing challenges of massive data-sets wherein the dimension
can be very large [2]. Recently, with the explosive growth of
interest in compressed sensing [3,4] and high-dimensional statis-
tics [2], a great deal of literature has been devoted to study the
learning problemwith ℓ1 regularization, i.e. gðxÞ ¼ λ‖x‖1 ¼ λ

P
ijxij.

The theoretical arguments for such a choice have been put forward
in, for example, [3–6]. It is known that ℓ1 regularization promotes
sparsity, which is conceived to be desirable in many learning
problems. As such, optimization algorithms have been specifically
developed to solved the Lasso-type problem [5] efficiently. The
compressed sensing repository1 contains numerous references on
optimization algorithms for solving compressed sensing recovery
via ℓ1 regularization. Consequently, the literature has seen an
increasing number of applications of ℓ1 regularization, such as face
recognition [7], graph optimization [8], object categorization [9].

As structure constraints are shown to be beneficial to learning
algorithms [10], the statistics literature has also seen an extension
of the basic Lasso scheme to situations where grouped variables
are available, known as group Lasso [11,12,2]. In this setting, the
variable vector x is naturally divided into G groups

x¼ ½x1; x2; …; xG�; A¼ ½A1A2…;AG� ð2Þ

Ax¼
XG
i ¼ 1

Aixi: ð3Þ
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Encouraging applications that exploits the group information can
be found in a wide range of problems from image tagging [13] to
face recognition [6].

However, there are cases where ℓ1 regularization does not
achieve competitive results as other dense regularization [14].
Theoretically, Xu et al. [15] have established that certain sparse
algorithms, including Lasso and group Lasso, are not algorithmi-
cally stable, an important property of a good learning algorithm.
Whilst not being algorithmically stable does not mean that
sparsity algorithms do not generalize, it implies that they can
potentially have poor predictive performance in the worst case
scenarios. More recently, it has been shown in [16] in the context
of multiple kernel learning that dense solution via ℓp-norm per-
forms better than sparse solutions and achieves state-of-the-art
performance over a wide range of problems. Likewise, [17] found
that ℓp regularization with group settings attains best compromise
between prediction and robustness for pA ½1:5;2�. It appears that
ℓp regularization is an alternative that provides a natural trade-off
between sparsity and stability [15]. However, ℓp regularization is
still of infrequent use in practice, especially in the group setting.
This could be of two reasons, both theoretically and computation-
ally. On the theoretical side, though there are some published
works in the statistics literature such as [18,19], little is known
about the generalization property of group bridge regression. On
the computational side, efficient algorithms for ℓp regularization
in general, especially in large-scale problems, seem to be lacking
compared with ℓ1 regularization. We note that ℓp regularization is
strictly convex for p41, and thus gradient techniques can be used.
However, they tend to have rather poor convergence property
especially when p is close to 1 (which we demonstrate
subsequently).

In this work, we further advocate the use of ℓp regularization in
a group setting. For the squared loss, this is known as group bridge
regression [18]. Though it is not new, we revisit this powerful
regression method in the large-scale pattern recognition context
and make two contributions. Theoretically, we prove that group
bridge regression is also algorithmically stable, and thus it gen-
eralizes. Computationally, we develop the novel and efficient
algorithms under two powerful optimization frameworks: alter-
native directions method of multipliers (ADMM) [20] and fast
iterative shrinkage thresholding (FISTA) [21]. We show that there
are values of p distributed over the range [1,2] where group bridge
regression have analytical solutions for the iterative updates, just
like the Lasso. This implies one can achieve varying degrees of
sparseness in the solution efficiently with the proposed algo-
rithms. This is particularly useful in cases where compressible data
is present [22]. When analytical updates are not available, we
propose an algorithm to compute the updates with an efficient
warm-start strategy. Whilst the studied examples in this work
subsequently show the advantage of ℓp regularization over ℓ1,
note that we do not claim it is always better. There will be cases
where ℓ1 might be more suitable. What we try to convey here is an
alternative method for pattern recognition, which clearly allows
flexibility between achieving sparse or dense solutions with the
most desirable property of a learning algorithm.

The paper is organized as follows. Section 2 establishes the
algorithmic stability of ℓp regularization in group bridge regression
settings. In Section 3, we derive efficient ADMM- and FISTA-based
algorithms for solving group bridge regression. Section 4 examines
the numerical properties of the proposed algorithms and demon-
strate the competitive advantage of group bridge regression over
other sparse alternatives on a synthetic dataset and a real-world
splice detection problem. Finally, Section 5 concludes.

The Matlab implementation of all developed methods is made
publicly available at the following website: https://sites.google.
com/site/dspham.

2. Algorithmic stability with ℓp-norm regularization

Algorithmic stability [23] is one powerful concept for assessing
the predictive power of a supervised learning method. We now
show that group bridge regression of problem (1) with

gðxÞ ¼ λ
XG
i ¼ 1

‖xi‖p2 ¼ λ‖x‖ℓ2=ℓp ; pA ð1;2�; ð4Þ

is indeed algorithmically stable. Our approach is based on the key
result in [24], and we tailor it to the group setting.

First, we briefly revisit the common setting in supervised
learning, where a set of data points z¼ fða1; y1Þ;…; ðan; ynÞg, and
aiARd. The aim is to learn a function f from z that allow us to
predict y given a future a. Here, for the formulation (1) the
function to be learnt is linear f ða; xÞ ¼ aTx and the squared loss
function Vðy1; yÞ ¼ 1

2ðy1�yÞ2. Up to a scaling by a factor of 1/n, the
formulation (1) is known in learning theory as empirical risk
minimization where the first term essential represents the empiri-
cal risk Rz ¼ 1

n

Pn
i ¼ 1 VðaTi x; yiÞ. An algorithm is said to be consistent

if the empirical risk converges asymptotically to the risk, i.e.

lim
n-1

Rz ¼ R¼ Eað1=2Þðy�aTxÞ2;

assuming bounded risk. For the finite sample case, the learning
theory is interested in the bound on the deviation of the empirical
risk from the risk. In algorithmic stability theory [23], an algorithm
is said to be uniformly β-stable if there exists a finite β that upper
bounds the maximum deviation in the loss due to replacement of
the sample z with any possible z0 from the same distribution.
Under regularity conditions on the loss function, including con-
vexity, boundedness at 0, and L-Lipschitz in the first variable
(which are met by the actual squared loss considered here), [23]
showed that the bound is

jRz�Rjrβþð2nβþL
ffiffiffi
κ

p
τþBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð1=δÞ

2n

r
: ð5Þ

with the probability of at least 1�δ. Here, κ is an upper bound on
the feature functions in the functional space of f, i.e. κ ¼ sup‖x‖22,
and B is an upper bound on the loss function when the first
variable is zero, i.e. B¼ 1

2maxy2, and L is the Lipschitz constant of
the lost function Vðy1; yÞ in terms of the first variable y1 subject to
the regular conditions, i.e. L¼ ymax�ymin. Detail can be found in
[23,24]. Clearly, when β¼ oðn�1=2Þ then stability implies general-
ization. Though uniform stability appears rather strict, it requires
no further assumptions on the data than other weaker notion of
stability in the literature [24].

Though algorithmic stability is a powerful tool to characterize a
learning algorithm, there was not an easy way to verify uniform
stability for a particular method until recently when Wibisono
et al. [24] discovered a sufficient condition to do so. Consider the
class of norm regularization where gðxÞ ¼ λPðxÞ where λ is the
regularization parameter and PðxÞ is some suitable norm. Denote
as xz and xzj respectively the solution of the regularized empirical
risk minimization on original data z and when the jth sample is
replaced with another from the same distribution. It was estab-
lished in [24] that

Theorem 2.1. Suppose that for some constant C40 and ξ41, the
penalty function satisfies

PðxzÞþPðxzj Þ�2P
xzþxzj

2

� �
ZC‖xz�xzj‖

ξ
2

then the regularization is uniformly β-stable with β¼ Lξκξ=2
nλC

� �1=ðξ�1Þ
.

Using this important result and following the strategy in [24],
we also establish algorithmic stability for group bridge regression
as follows:
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