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a b s t r a c t

Regularized linear models are important classification methods for high dimensional problems, where
regularized linear classifiers are often preferred due to their ability to avoid overfitting. The degree of
freedom of the model dis determined by a regularization parameter, which is typically selected using
counting based approaches, such as K-fold cross-validation. For large data, this can be very time
consuming, and, for small sample sizes, the accuracy of the model selection is limited by the large
variance of CV error estimates. In this paper, we study the applicability of a recently proposed Bayesian
error estimator for the selection of the best model along the regularization path. We also propose an
extension of the estimator that allows model selection in multiclass cases and study its efficiency with L1
regularized logistic regression and L2 regularized linear support vector machine. The model selection by
the new Bayesian error estimator is experimentally shown to improve the classification accuracy,
especially in small sample-size situations, and is able to avoid the excess variability inherent to
traditional cross-validation approaches. Moreover, the method has significantly smaller computational
complexity than cross-validation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The task in supervised classification is to learn to make
predictions about the class of an unknown object given a training
set of P-dimensional feature vectors x1;…; xN with known class
memberships. An important special case of supervised classifica-
tion problems arises when the number of features P is larger or
nearly as large than the number of training samples N. These
classification problems are increasingly important, for example, in
genomics and neuroimaging [1,2]. Due to a small number of
training samples (compared to the data dimensionality), linear
classifiers are preferred in such cases. Also, some form of regular-
ization is necessary to cope with small N.

In this paper, we concentrate on two widely used regularized
linear classifiers: L1 or LASSO regularized logistic regression [3–5]
and support vector machine (SVM) [6,7]. These classifiers are
trained by minimizing a cost function that is a weighted sum of
data term and a regularization term. The usual strategy for
selecting the weights (or the value for the regularization para-
meter) is to train classifiers for various values of regularization
parameter producing a set of models and then select the best
model according to some model selection criteria. The most

widely used approach is to select the best model based on a
(non-parametric) estimate of classification error, such as cross-
validation (CV), bootstrap and resubstitution error estimators.

The randomness of the cross-validation has certain drawbacks:
the model selection depends on the particular split of the data, the
approach is time consuming, and the resulting error estimate may
have a large variance [8]. In particular, the latter problem has been
documented already almost four decades ago [9], but it is still
often dismissed [8]. Thus, we are interested in finding a determi-
nistic, accurate and fast approach for choosing the regularization
parameter of a regularized linear classification model.

Other approaches for model selection include information
theoretic tools, such as the Akaike Information Criterion (AIC)
[10], the Bayesian Information Criterion (BIC) [11]; including its
use for logistic regression models [12] and SVMs [13], and
extended BIC (EBIC) [12], which corrects drawbacks of the BIC
when P4N. However, all of the above are based on the likelihood
of the model, not on the prediction error. In predictive modeling,
the actual model is often of secondary importance, and the critical
issue is the prediction ability and the minimal error. For the SVM
model selection, various techniques based on different error
bounds and concepts from algorithmic information theory have
been suggested [14,15]. However, these are either complicated and
expensive to compute or do not yield satisfactory results [16].
Probably for this reason, the K-fold CV is still the most popular
model selection criterion also in small sample settings.
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Recently, a few alternatives to the CV type methods for the
estimation of classification error have been proposed. One of them
is the Bolstered error estimation [17], which attempts to smooth the
empirical distribution of the available data by placing bolstering
kernels at each data point location. A more recent approach, the
Bayesian minimum mean-square estimator for classification error
describes the error in a Bayesian framework [18,19]. Moreover, a
closed form expression can be derived for the posterior expecta-
tion of the classification error in the binary classification case
under mild assumptions about the covariance structure. The
method is attractive, because the errors are estimated directly
from the training data, and no iterative resampling or splitting
operations are required. This results also in a significant speedup,
since the classifier training is done only once. For example, the 5-
fold CV (CV-5) includes five training iterations on partial data and
one on all training data, while the Bayesian error estimator
requires only the last training step with all data.

Experimental data suggests that the Bayesian error estimator
(BEE) can be more accurate in absolute terms than the CV-based
classification error estimates, in particular with small sample sizes
[19]. In our earlier work, we have shown that the BEE is accurate
for model selection as well [20]. More specifically, we compared
the BEE with CV and BIC criteria when used for selecting the
regularization parameter λ for the binary logistic regression model
with LASSO penalty. This paper extends the earlier study by
(1) proposing a Bayesian model selection rule for multinomial
classification problems, (2) considering BEE model selection under
more general priors than in [20] and (3) studying the rule for
selection of the regularization parameter for both SVM and logistic
regression classifiers. Moreover, extensive experiments show that
the BEE criterion is significantly faster than the CV, and also more
accurate unless the model assumptions are severely violated. The
implementation of the proposed error estimator in Matlab and
Python is available for download.1

The rest of this paper is organized as follows: In Section 2 we
will briefly review the regularized logistic regression and SVM
classifiers; Section 3 defines the Bayesian error estimator for
binary and multiclass cases; and Section 4 compares the accuracy
of the BEE to CV and BIC based model selection in various
experimental cases. Finally, Section 5 discusses the applicability
and the limits of the proposed method.

2. Linear classifiers

In the following, we denote the observation matrix as XARN�P ,
whose rows xi are the samples with corresponding class labels
y¼ ðy1;…; yNÞT with yi ¼ f�1;1g in the 2-class case and
yiAf1;2;…;Cg in the multiclass case. The predicted class label ŷ
for the feature vector x is given by ŷ ¼ signðβ0þβTxÞ6gðxÞ in the
binary case and ŷ ¼ arg maxcðβc;0þβTc xÞ in the multiclass case,
where the classifier parameters β0; βc;0AR and β¼ ðβ1; β2;…; βPÞT ;
βc ¼ ðβc;1; βc;2;…; βc;PÞT ARP are learned from training data.

2.1. Regularized logistic regression

Logistic regression (LR) is a statistical classification method
modeling the class conditional probability densities by the logistic
function. Binary logistic regression models the class probabilities
of the sample x¼ ðx1; x2;…; xPÞT ARP belonging to class cAf�1;1g
as

PrðcjxÞ ¼ 1
1þexp cðβ0þxTβÞ� �:

A slightly different model is adopted for multinomial logistic
regression for C classes [5], which models the probability PrðcjxÞ
of the sample x belonging to class cAf1;2;…;Cg as

PrðcjxÞ ¼ expðβc;0þβTcxÞPC
k ¼ 1 expðβk;0þβTkxÞ

:

Adopting the notation β16β for the 2-class case, the model
parameters are learned from the training data by maximizing
the ℓ1-penalized log-likelihood

XN
i ¼ 1

log Prðyi jxiÞ�λ
XL
c ¼ 1

Jβc J1

where L¼C for the multiclass case and L¼1 for the 2-class case.
Although the penalized log-likelihood function is not differ-

entiable everywhere, several approximate algorithms exist for the
minimization task [4,5,21] and the implementation of this paper
uses the GLMNET algorithm [5].

2.2. The support vector machine

Support vector machines (SVM) are widely used due to their
maximum margin property. The binary SVM with the linear kernel
solves the following problem:

min
β;β0 ;ξ

1
2
βTβþCn

Xl
i ¼ 1

ξi

 !
such that

yiðβTxiþβ0ÞZ1�ξi;

ξiZ0 for i¼ 1;…;N:

(

where CnAR is the upper bound. Alternatively, the above con-
strained minimization problem can written in a form emphasizing
the regularization [7]

min
β0 ;β

XN
i ¼ 1

½1�yiðβ0þβTxiÞ�þ þλJβJ22;

where ½x�þ ¼maxð0; xÞ and λ¼ 1=ð2CnÞ. In our work, we use the
LIBSVM implementation of the SVM and extend it into the multi-
class case using a one-against-one strategy [22].

2.3. Model selection

With both logistic regression and SVM classifiers, the para-
meter λ40 controls the strength of the regularization. Different
choices of λAfλ1; λ2;…; λMg produce different classifiers and we
denote the parameters as β0ðλÞ, βðλÞ, βc;0ðλÞ and βcðλÞ to make this
fact apparent when needed.

The best value of λ is traditionally selected by cross-validation:
either as the minimum of the cross-validation error curve [22] or
as the largest λ whose error is within one standard deviation from
the minimum [5]. The latter rule favors slightly sparser solutions
and tends to decrease the generalization error. However, in our
earlier work [20] choosing the minimum CV error solution
resulted in more accurate prediction, so from now on we will
focus on the minimum of the CV error as the selection rule.

Fig. 1 illustrates the model selection using different error estima-
tors. Examples of error curves for different values of the regularization
parameter λ with the logistic regression model are shown in Fig. 1. In
this example, a 20-dimensional toy dataset with altogether 500
normally distributed samples drawn from two classes was generated.
The errors for models with log 10ðλÞAf�0:5; �0:6;…; �3:9; �4:0g
were estimated using 5-fold CV (top left) and the BEE (top right).
There is a significant variation between resulting error curves as
shown in Fig. 1 (top left) and there is even more significant variation
between the location of the minima of the curves, as seen in Fig. 1
(bottom). In particular, note that there are two isolated cases where
the minima are far from the majority of cases, with λ¼ 10�2:8 and
λ¼ 10�2:9.1 https://sites.google.com/site/bayesianerrorestimate/
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