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a b s t r a c t

When in possession of prior knowledge concerning the feature-label distribution, in particular, when it is
known that the feature-label distribution belongs to an uncertainty class of distributions governed by a
prior distribution, this prior knowledge can be used in conjunction with the training data to construct
the optimal Bayesian classifier (OBC), whose performance is, on average, optimal among all classifiers
relative to the posterior distribution derived from the prior distribution and the data. Typically in
classification theory it is assumed that sampling is performed randomly in accordance with the prior
probabilities on the classes and this has heretofore been true in the case of OBC. In the present paper we
propose to forego random sampling and utilize the prior knowledge and previously collected data to
determine which class to sample from at each step of the sampling. Specifically, we choose to sample
from the class that leads to the smallest expected classification error with the addition of the new
sample point. We demonstrate the superiority of the resulting nonrandom sampling procedure to
random sampling on both synthetic data and data generated from known biological pathways.

& 2015 Published by Elsevier Ltd.

1. Introduction

In many classification applications one is limited to small samples.
For instance, in medicine, where classification may involve diagnosis,
prognosis, or treatment option, data can be limited due to specimen
availability, cost, or the time necessary to obtain and process speci-
mens (which is related to cost). In classification theory it is generally
assumed that sampling is random, meaning that the training data are
independent and identically distributed (i.i.d.); indeed, assumption of
random sampling is typically made throughout a text on classifica-
tion. For instance, Devroye et al. declare on page 2 of their text that
all sampling is random [1]. The assumption is so pervasive that it
may be applied without being mentioned. Duda et al. state: “In
typical supervised pattern classification problems, the estimation of
the prior probabilities presents no serious difficulties.” [2]. Implicit in
this statement is that the ratio of the number of data points in a class
with respect to the total sample size converges to the class
probability, as it does in the case of random sampling according to

Bernoulli's law of large numbers. No doubt, random sampling has
advantages, but is it most efficient in classifier design, especially
when one is constrained to small samples?

The effects of nonrandom sampling owing to correlation in the
training data have been examined as far back as the early 1970s
using numerical examples [3] and the issue subsequently has been
examined by studying the effects on asymptotic error rates in the
context of linear discriminant analysis (LDA) [4–6]. With small
samples, asymptotic results are not really relevant. More recently,
nonrandom sampling has been addressed for finite samples by
providing representation of the first- and second-order moments
for expected errors arising from nonrandom sampling, again in the
framework of LDA [7]. In particular, these results demonstrate that
nonrandom sampling can be advantageous depending on the
correlation structure within the data.

Here we consider a specific scenario for nonrandom sampling.
Given a sample, Sn, consisting of n data points, if another data
point is to be selected and a classifier designed from the larger
sample, Snþ1, would it be better to select the new point in an i.i.d.
fashion, which means it could come from either class-conditional
distribution, or to predetermine the class from which it is to be
chosen based on some class-selection criterion, in which case Snþ1

would not be a random sample, even if Sn were a random sample?
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The answer depends on having a suitable criterion whose applica-
tion leads to making a beneficial choice as to whether or not to
select an i.i.d. data point. By working within the framework of
optimal Bayesian classification, we can establish such a criterion
and obtain an advantageous nonrandom sampling procedure. In
this framework, one has an uncertainty class of possible feature-
label distributions and a prior distribution governing the uncer-
tainty class. This allows one to determine the minimum mean-
square-error (MMSE) estimate of the error based on the prior
distribution and the data [8,9]. An optimal Bayesian classifier
(OBC) possesses minimum expected error across the uncertainty
class [10,11]. Relative to the sampling procedure, the aim is to
select the next data point in such a way as to minimize the
expected error of the optimal Bayesian classifier, the critical point
being that the Bayesian framework facilitates determination of the
expected error, which is impossible in the ordinary purely data-
driven setting.

This work focuses on discrete classification. Using simulations,
both with synthetic and simulated data from real biological path-
ways, we demonstrate the effectiveness of the proposed nonran-
dom sampling paradigm relative to random sampling and also
examine some of its properties.

Other methods for nonrandom sampling have been proposed
that possess conceptual similarities as well as vital differences
with the approach proposed herein. These include online learning
and active sampling (learning).

In online learning, sequential measurements are made, one at a
time, to improve an uncertain model. In particular, the knowledge
gradient (KG) algorithm assumes that one of M alternatives can be
measured at each time step, each yielding a random reward with
an unknown mean and known variance (corresponding to mea-
surement error) [12]. The aim is to make sequential measurements
that will maximize the expected total reward to be collected over a
time period, thereby treating the problem as a multi-armed bandit
process [13]. To achieve this goal, at every time step one tries to
identify the optimal KG policy that allows one to choose a
measurement (among the M available alternatives) that is
expected to bring the largest improvement. The alternative mea-
surements (or rewards) are typically assumed to be independent
Gaussian random variables and prior knowledge concerning the
measurements and their correlations can be incorporated into the
problem via their joint distribution. Our proposed Bayesian frame-
work for nonrandom sampling utilizes a substantially different
approach, in that it puts a prior distribution on an uncertainty
class of feature-label distributions. Among the key differences
resulting from this Bayesian framework is that the distribution of
the reward (cost) is not directly modeled; instead, we estimate the
expected cost, which is classification error. Moreover, we do not
impose restrictions on the variance of our cost/reward in the case
of pursuing each policy.

Active sampling has a long history in machine learning, going
back to [14,15]. As discussed in [16], the essence of active sampling
algorithms is to control the selection of potential unlabeled
training points in the sample space to be labeled and used for
further training. A generic active sampling algorithm is described
in [17]. While there are conceptual similarities with our work,
there are fundamental differences. Our goal is not to search among
unlabeled sample points for those for which we wish to generate
labels; rather, we generate new sample points from a chosen
known label. Moreover, we directly target reduction of classifica-
tion error. Reducing uncertainty in our class probability distribu-
tions is a side effect, not the direct goal. Considering active
learning under a Bayesian framework as in [18] does not eliminate
the difference because the underlying strategy is to choose sample
points to label.

The rest of the paper is organized as follows. In Section 2 the
general framework of the discrete classification problem and the
optimal Bayesian classifiers is introduced. In Section 3 the proposed
sampling algorithm is introduced. Section 4 shows some results of
applying the proposed sampling method in the classification pro-
blemwith synthetic data from a Zipf model. In Section 5 the effect of
the proposed method is studied on data generated from pathways.
Section 6 concludes the paper.

Throughout this paper, we use bold letters to denote vectors,
e.g. p or U. Capital letters are used for random variables; when in
bold they denote a random vector. The notation EπðθÞ½�� is the
expectation with respect to the parameter θ distributed by πðθÞ.

2. The discrete model and optimal Bayesian classifier

The discrete model consists of b bins and two classes, yAf0;1g,
with pi

� �b
1 and qi

� �b
1 being class-conditional probabilities

for iAX ¼ f1;…;bg, and c being the prior probability of class 0,
i.e. PðX ¼ ijy¼ 0Þ ¼ pi; PðX ¼ ijy¼ 1Þ ¼ qi for i¼ 1;…; b, and c¼
Pðy¼ 0Þ.

A classifier is a function ψ that maps sample points to a class,
ψ : f1;…; bg-f0;1g. The true classification error ε is the probabil-
ity that a sample point from class y is classified by ψ as belonging
to a different class; ε¼ Pðψ ðXÞayÞ. The error can be decomposed
as a weighted average of ε0 and ε1, the classification errors for
classes 0 and 1, respectively, by

ε¼ cPðψ ðxÞ ¼ 1jy¼ 0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ε0

þð1�cÞPðψ ðxÞ ¼ 0jy¼ 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ε1

: ð1Þ

In the discrete model,

ε0 ¼
Xb
i ¼ 1

piIψ ðiÞ ¼ 1 and ε1 ¼
Xb
i ¼ 1

qiIψ ðiÞ ¼ 0; ð2Þ

where Ið�Þ is the indicator function, e.g. Iψ ðiÞ ¼ 1 ¼ 1 if and only if
ψ ðiÞ ¼ 1.

Let Sn ¼ fðX1;Y1Þ; ðX2;Y2Þ;…; ðXn;YnÞg be a sample taken from
the feature-label distribution. Let Ui ¼ ui and Vi ¼ vi denote the
numbers of observed sample points from classes 0 and 1 in bin i,
respectively. The histogram rule assigns a class label to each bin via
majority voting in that bin:

ψhistðX ¼ iÞ ¼ 1 if vi4ui

0 otherwise:

�
The histogram rule is the plug-in rule for discrete classification
and is consistent. Hence, it is well-suited for large-sample applica-
tions; however, our interest is with small samples and therefore
we utilize the optimal Bayesian classifier (OBC) [10,11].

For the OBC, we assume that the actual model belongs to an
uncertainty class, Θ, of discrete feature-label distributions parameter-
ized by θ¼ ½c;θ0;θ1�, where θ0 ¼ ½P1;…; Pb�1� and θ1 ¼ ½Q1;…;

Qb�1�. Define P¼ ½P1;…; Pb�1; Pb� and Q ¼ ½Q1;…;Qb�1;Qb�.
Because each vector P and Q forms a probability mass function
(PMF), the last bin probabilities are defined by Pb ¼ 1� Pb�1

k ¼ 1 Pk

and Qb ¼ 1� Pb�1
k ¼ 1 Qk, so they are not free parameters and are

dropped from the parameter model. Note that, since in the Bayesian
context the PMFs above are random, they are denoted by capital
letters.

Table 1 summarizes the main variables in this and the next
sections. For a complete description of the details used in our
framework, the reader is referred to [10,11].

Prior knowledge pertaining to θ is in the form of a prior
probability distribution πðθÞ. The prior is updated by getting new
data sample points and obtaining the posterior distribution, πnðθÞ.
To facilitate analytic representations, it is assumed in [8] that c;θ0,
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