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a b s t r a c t

In this study, we compare two vectorial tracing methods for 3D color images: (i) a conventional piecewise
linear generalized cylinder algorithm that uses color and edge information and (ii) a principal curve trac-
ing algorithm that uses the gradient and Hessian of a given density estimate. We tested the algorithms on
synthetic and Brainbow dataset to show the effectiveness of the proposed algorithms. Results indicate
that the proposed methods can successfully trace multiple axons in dense neighborhoods.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

It is impossible to throughly understand the function of a com-
plex system without understanding its basic elements. For that
reason morphology (geometry and topology) of neurons is of broad
interest, in order to comprehend the function and connectivity of
neurons as well as to detect miswiring as may occur in Alzheimer’s
and Parkinson’s diseases [25,19]. Various imaging techniques have
been utilized to uncover morphology. Resolution limitations in
optical imaging, problems related to sample preparation and most
dominantly, the diversity and the complexity of neuronal arbors
are some of the major challenges in neuroinformatics. With recent
improvements in 3D imagery techniques, high volumes of data are
available as image stacks, but obtained images are not always dis-
criminative and conclusive. Hence, they require tedious and, most
of the time, impractical manual processing. Therefore, reliable and
efficient techniques are needed to process these data with mini-
mum initialization/parametrization and easy user intervention.

Significant research effort has been dedicated to the segmenta-
tion and analysis of curvilinear objects that arise in various con-
texts (e.g. vascular networks, bronchia) [44,6,38,15,55]. In
general, segmentation is the first step to outline an object. Further

analysis is needed to extract the topology information from the
segmented image stack, which ranges from unsupervised skeleton-
ization techniques to model based approaches. A recent literature
review for the analysis of linear branched structures can be found
easily [34]. However, it is safe to claim that all tree extraction
methods in the literature seek the underlying ridge (trace) of the
curvilinear structure.

Definition of a ridge has been studied in various contexts. In sta-
tistical signal processing, ridges of functions or data clouds have
been studied under the concept of principal curves [24,26,40]. In
images conditions for pixels being on the ridges are also discussed
[18,37]. Although these previous works defined local conditions for
ridges or samples from the principal curves, they do not answer the
connectivity of such samples in space [18,37,40].

Earlier attempts to uncover the connectivity of samples from
ridges used the topological skeletonization of data. The skeleton
of an object is obtained by removing the exterior pixels/voxels to
obtain the underlying geometry (centerline) of the structure
[13,29,41]. These morphological methods applied to binary data
where segmented images are already provided beforehand, are
very sensitive to noise level, resulting in disconnections in the
skeleton.

Another set of algorithms employ active contour models or le-
vel-sets. These techniques optimize some suitable energy function
that combines appearance and geometry terms through scalariza-
tion (e.g. linear combination). Unlike unsupervised clustering based
approaches, prior shape models can also be incorporated into the
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optimization, which can be solved by efficient graph path search
algorithms, such as Dijkstra’s [17,45,50,12]. Shape priors are incor-
porated to the optimized energy function [39,36,38,45,10,52,55] to
highlight the object boundaries. These approaches are shown to
work well in a variety of scenarios for segmentation with careful
tuning. However, tuning operation requires a detailed level of topo-
logical and structural understanding of the dataset in order to de-
fine energy functions that will succeed.

In conjunction with the contour models, multi-scale enhance-
ment methods have also been employed to highlight certain curvi-
linear structures [44,21,17,47,35,53,56,43,22]. Eigenanalysis of the
Hessian matrix of the image intensity is a popular approach to
identify objects (e.g. vessels), where eigenvalue ratios can be re-
lated to local curvature.

In general, a major challenge in graph construction is parameter
optimization. It is possible to end up with global solutions that are
infeasible due to the selection of parameters or initializations, and
tuning of these parameters get harder as the dimension of data
increases. For that reason, most of the proposed 3D methods seek
3D associations between 2D image segmentation results
[52,45,10,11,54]. However, such approaches increase the complex-
ity by creating problems not present in 3D (e.g., occlusions), and try
to address them with arbitrary heuristics.

In another track of algorithms, local 3D approaches construct a
local graph representation for the data to simplify the search space
without introducing complexity. For large datasets, where search

space increases exponentially with the data dimension, these
methods provide fast and efficient locally optimum solutions for
the tracing problem [2,10,52,11,54]. Algorithms in this category
generally start from a given seed point with an initial direction
vector. Optimality measures are similar to the ones that are de-
fined for the global solutions, but they process only the proximity
of the points in the feature space. Therefore they are also called
‘‘exploratory algorithms’’ which provide fast solutions for the opti-
mum trace/minimum path problem. Generalized shape models can
be classified in this category, where tubular objects are modeled as
piecewise-linear cylinders with varying radius [27,21,2,1,15,7].
These methods locally fit the shape model to the wall of the tubu-
lar objects. Usually the shape is assumed to be a cylinder, but it can
be more complex (superellipsoid) depending on the available com-
putational power [49] or simpler (sphere) depending on the appli-
cation [30].

Brainbow images, as shown in Fig. 1, are obtained by a recently
developed technique for acquiring 3D colored confocal microscopy
imagery that depict neuronal networks in the central nervous sys-
tem [32,23]. They present a great opportunity for neuroscientists
to study brain structure and function. By staining individual neu-
rons using a combination of fluorescent proteins, each neuron
can potentially be labeled with a distinct color (a maximum of
approximately 90). However, given the complexity and the density
of arboring structures, as well as due to the randomness in the
staining process and protein expression, selectivity on the color

Fig. 1. (a) MIP of Brainbow image stack showing a bundle of axons of motor neurons. (b) MIP of estimated edge map of the image stack. (c) Zoomed single slice view of the
region depicted with red box in (a). (d) Same region after 3D bilateral denoising. Scale bars are 100 pixels in (a and b) and 20 pixels in (c and d) respectively.
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