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a b s t r a c t

Multi-label data are prevalent in real world. Due to its great potential applications, multi-label learning
has now been receiving more and more attention from many fields. However, how to effectively exploit
the correlations of variables and labels, and tackle the high-dimensional problems of data are two major
challenging issues for multi-label learning. In this paper we make an attempt to cope with these two
problems by proposing an effective multi-label learning algorithm. Specifically, we make use of the
technique of partial least square discriminant analysis to identify a common latent space between the
variable space and the label space of multi-label data. Moreover, considering the label space of the multi-
label data is sparse, a l1-norm penalty is further performed to constrain the Y-loadings of the
optimization problem of partial least squares, making them sparse. The merit of our method is that it
can capture the correlations and perform dimension reduction at the same time. The experimental
results conducted on eleven public data sets show that our method is promising and superior to the
state-of-the-art multi-label classifiers in most cases.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-label learning is a typical classification application of
supervised learning. Unlike traditional supervised learning tech-
niques involving class labels exclusively, multi-label learning
mainly concerns data associated with more than one class label
simultaneously. This kind of data is known as multi-label data,
which are prevalent in many real-world applications [1]. For
example, the movie Avatar can be tagged with action, horror and
science fiction types; a piece of financial storm news may be linked
with market, economics and politics; an image portraying Pyramids
may be involved with pyramid, Egypt, architecture and Africa; a
gene in bioinformatics may be associated with a number of
functional classes, such as metabolism and protein synthesis.

Since multi-label learning has a great number of potential
applications, it has now been receiving more and more attentions
from various fields [2]. Many multi-label learning algorithms, such as
IBLR_ML [3], RAkEL [4] and Rank-CVM [5], have been witnessed
during the past decades, and widely applied in many domains,
including text categorization [6], image and video annotation [7],

content annotation [8], music processing [9], bioinformatics [10], and
so on. Generally they can be grouped into two categories, i.e.,
algorithm adaption and problem transformation [1,11]. The former
extends traditional classifiers (e.g., kNN and SVM) to cope with multi-
label data by exerting some proper constraint conditions, while the
latter technique transforms multi-label data into corresponding
single-label ones. Typical examples include BRkNN and LPkNN [4].

How to effectively capture the correlations of the labels of data is
still an open issue in multi-label learning. As we know, the output of
the multi-label learning models is a set of class labels, no longer a
single label, for a given data at a time. Indeed, the labels are often
relevant to each other in practice. It requires that the correlations of
the labels should be considered when building a multi-label learning
model [12]. The existing learning algorithms either treat the class
labels independently, or take each set of the labels occurred in
training data as a new label. However, they cannot work effectively
especially when there are a large number of class labels in the data,
albeit the correlations of the labels can be captured to some extent.

Another challenging issue often encountered in multi-label
learning is the high dimensionality of data collected from large-
scale applications. As the dimensionality is getting larger, it gives
rise to problems like over-fitting, multi-collinearity and “curse of
dimensionality” [13,14,16]. Dimensionality reduction is an effec-
tive technique to address the high-dimensional problems [15]. For
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example, Zhang and Zhou [16] projected the original data into a
lower-dimensional space with the Hilbert–Schmidt Independence
Criterion, while Ji et al. [17] extracted a common subspace shared
among multiple labels by virtue of ridge regression. Liu et al. [18]
made use of logistic regression to construct a multi-label classifier.
However, one limitation of the above methods is that their outputs
are weighted combinations of the original spaces by linear
transformation, making the interpretation of results difficult.

With these motivations, in this paper we address the above
problems and propose a new multi-label learning algorithm called
PPLS-MD (Penalized Partial Least Squares for Multi-label Data)
according to the inherent properties of multi-label data. Specifi-
cally, we adopt the technique of partial least square to explore the
correlations of variables and labels and perform dimension reduc-
tion for multi-label data. Furthermore, a constraint condition of
the l1-norm penalty is imposed on the optimization problem of
partial least square discriminant analysis. Imposing the constraint
is consistent with the sparse character of the labels for multi-label
data, that is, the class labels are often sparse.

In a nutshell, the key contributions of this paper are highlighted
as follows:

� We propose a multi-label learning framework for multi-label
data, which can not only capture the correlations of variables
and labels, but also perform the operation of dimension
reduction simultaneously.

� We reveal the correlations by using the multivariate analysis
method of partial least square discriminant analysis, which is
an effective technique to analyze the relationships between
two sets of variables.

� We impose the l1-norm penalty on the discriminant model to
regularize the Y-loadings, yielding a sparse model. This is consis-
tent with the sparse property of the label space of multi-label data.

The rest of this paper is organized as follows. Section 2 briefly
reviews the state-of-the-art on multi-label learning. We formulate
the multi-label learning problem and give the basic concept of
partial least squares in Section 3. Section 4 presents the proposed
learning framework of PPLS-MD for multi-label data and discusses
the relationship to several popular learning methods. The experi-
mental settings are provided in Section 5, followed by the experi-
mental results of our method with the comparing algorithms on
eleven data sets in Section 6. Section 7 concludes the paper.

2. Related work

In this section, we briefly review the most related and repre-
sentative multi-label learning methods. Please refer to good
surveys (see, e.g., [1,11,19]) and references therein to get more
details of multi-label learning algorithms.

As mentioned in Section 1, multi-label learning algorithms fall
into two major categories: problem transformation and algorithm
adaptation. The characteristic of the former one is fitting data to
algorithms. The central idea is to partition each multi-label
observation (i.e., sample) into several corresponding single-label
ones, on which a classification model can be constructed by using
ensemble strategies. Binary relevance (BR) [11] and DBR [20] are
representative examples of this kind. However, BR does not
involve the correlations of class labels during the learning stage.

To alleviate this problem, Label Powerset (LP) constructs
classification models by concerning pairwise or subset correla-
tions. For example, calibrated label ranking (CLR) [21] pays atten-
tion on the pairwise correlations of the labels, while RAndom
k-labELset (RAkEL) [4] takes k labels as a whole at a time. Although
the LP methods take the correlations into account to some extent,

they have relatively high complexities and cannot work well
especially when the number of the class labels is large [22].

The second kind of multi-label learning methods is algorithm
adaptation. It extends traditional learning algorithms, such as C4.5,
kNN and SVM, to solve the multi-label problems. BRkNN [4] and
MLkNN [23] are representative examples of this kind, and both of
them adopt kNN to predict the output results. IBLR_ML [3] integrates
kNN and logistic regression to construct a classification model for
multi-label data, while Rank-CVMz [24] makes use of a core vector
machine to train a multi-label classifier. Usually the adaptation
learning methods have not involved the correlations of the class labels.

How to effectively tackle high-dimensional data is still an open
issue in multi-label learning. The existing multi-label learning algo-
rithms discussed above place less attention on the high-dimensional
problems, which are prevalent in real-world applications, such as
computer vision, information retrieval and bioinformatics. Dimension-
ality reduction, seeking a succinct and low-dimensional variable space
to preserve intrinsic characteristics of the original high-dimensional
data, is an effective technique to cope with the high-dimensional data
in machine learning.

Recently several works have also discussed the high-dimensional
problems and applied the techniques of dimension reduction to high-
dimensional multi-label data. For example, Hsu et al. [25] encoded
and decoded the label space using compressive sensing. Bi and Kwok
[26] represented the labels as a tree or directed acyclic graph, while
Tai and Lin [27] transformed the label space into a small linear space
by mapping all possible label sets to vertices of a hypercube. Ji et al.
[17] extracted a common subspace from the label and variable spaces
to capture their correlations. In addition, canonical correlation analysis
has also been applied to measure the correlations of the variables to
the class labels in the literature [28,29]. However, the common
limitation of dimension reduction is that the derived results are hard
to be interpreted, because they are weighted combinations of the
original space. Especially when the dimensionality of data is very high,
the interpretability becomes impossible. Besides, they have not fully
explored the characteristic of multi-label data.

3. Preliminary concepts

3.1. Problem formulation

Assume that X ¼ fX1;X2;…;Xng represents n independent obser-
vations (or samples), where each observation XiARp is a vector in a p-
dimension variable space. Y ¼ fy1; y2;…; yqg are q class labels asso-
ciated with the observations. The data collection D¼ fðXi;YiÞgni ¼ 1 is
called a set of multi-label data, if YiDY. Without loss of generality, the
subset Yi of the labels is often represented as a vector form like
Yi ¼ fYikgqk ¼ 1, where YikAf0;1g. Yik ¼ 1 indicates that the k-th label
yk is associated to Xi; Otherwise yk is irrelevant to Xi.

Multi-label learning refers to the process of constructing a
classification model h : X-2Y from the data set D, such that it can
effectively help users to understand the data easily and make right
decisions in future prediction. From this definition, we know that
the model h is a mapping of the variable space X to the label space
Y. Unlike traditional learning models, the output of a multi-label
model h is a subset YkDY of the labels. Once the model h is
available, we can make use of it to determine a proper label subset
for any new observation.

3.2. Partial least square discriminant analysis

Since partial least squares (PLS), a well known method for
modeling the relationships between two sets of observed variables
[30], was introduced, it has been gaining a lot of attention from
various domains. In practice, PLS has often been used as a tool of
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