
A coarse-to-fine approach for fast deformable object detection

Marco Pedersoli a,n,1, Andrea Vedaldi b, Jordi Gonzàlez a, Xavier Roca a

a Computer Vision Center and Universitat Autònoma de Barcelona, Edifici O, Campus UAB, 08193 Bellatera, Spain
b Department of Engineering Science, Oxford University, Oxford OX1 3PJ, UK

a r t i c l e i n f o

Article history:
Received 13 November 2013
Received in revised form
17 October 2014
Accepted 8 November 2014
Available online 15 November 2014

Keywords:
Object recognition
Object detection

a b s t r a c t

We present a method that can dramatically accelerate object detection with part based models. The
method is based on the observation that the cost of detection is likely dominated by the cost of matching
each part to the image, and not by the cost of computing the optimal configuration of the parts as
commonly assumed. To minimize the number of part-to-image comparisons we propose a multiple-
resolutions hierarchical part-based model and a corresponding coarse-to-fine inference procedure that
recursively eliminates from the search space unpromising part placements. The method yields a ten-fold
speedup over the standard dynamic programming approach and, combined with the cascade-of-parts
approach, a hundred-fold speedup in some cases. We evaluate our method extensively on the PASCAL
VOC and INRIA datasets, demonstrating a very high increase in the detection speed with little
degradation of the accuracy.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few years the interest of the object recognition
community has moved from image classification and orderless
models such as bag-of-words [1] to sophisticated representations
that can explicitly account for the location, scale, and deformation
of the objects [2–5]. By reasoning about geometry instead of
discarding it, these models can extract a more detailed description
of the image, including the object location, pose, and deformation,
and can result in better detection accuracy.

A major obstacle in dealing with deformable objects is the
combinatorial complexity of the inference. For instance, in the
pictorial structures pioneered by Fischler and Elschlager [6] an
object is represented as a collection of P parts, connected by
springs. The time required to find the optimal part configuration to
match a given image can be as high as the number L of possible
part placements to the power of the number P of parts, i.e. OðLPÞ.
This cost can be reduced to OðPL2Þ or even O(PL) by imposing
further restrictions on the model ([2], Sections 2, 3.1), but is still
significant due to the large number of possible part placements L.
For instance, just to test for all possible translations of a part, L can
be as large as the number of image pixels. This analysis, however,
does not account for several aspects of typical part based models,
such as the fact that useful object deformations are not very large
and that, with appearance descriptors such as histograms of

oriented gradients (HOG) [7], locations can be sampled in a
relatively coarse manner.

The first contribution of this paper, an extension of our prior
work [8,9], is a new analysis of the cost of part based models
(Section 3.1) which better captures the bottlenecks of state-of-the-
art implementations such as [7,3,10]. In particular, we show that
the cost of inference is likely to be dominated by the cost of
matching each part to the image rather than by the cost of
determining the optimal part configuration. This suggests that
accelerating inference requires minimizing the number of times
the parts are matched.

Reducing the number of part evaluations can be obtained by
using a cascade [11], a method that rejects quickly unpromising
object hypotheses based on cheaper models. For deformable part
models two different types of cascades have been proposed
(Sections 2, 3.1). The first one, due to Felzenszwalb et al. [12],
matches parts sequentially, comparing the partial scores to
learned thresholds in order to reject object locations as soon as
possible. The second one, due to Sapp et al. [13], filters the part
locations by thresholding marginal part scores obtained from a
lower resolution model.

The second contribution of the paper is a different cascade
design (Section 3.2). Similar to [11,13], our method is coarse-to-
fine. However, we note that, by thresholding scores independently,
standard cascades propagate to the next level clusters of nearly
identical hypotheses (as these tend to have similarly high scores).
Instead of thresholding, we propose to reject all but the hypothesis
whose score is locally maximal. This is motivated by the fact that
looking for a locally optimal hypothesis at a coarse resolution often
predicts well the best hypothesis at the next resolution level
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(Section 3.2). As suggested in Fig. 1, and as showed in Sections 3.2–
3.4, this results in an exponential saving, which has the additional
benefit of being independent of the image content. Experimentally,
we show that this procedure can be more than ten times faster
than the distance transform approach of [2,3], while still yielding
excellent detection accuracy.

Compared to using global thresholds as in the cascade of parts
approach of Felzenszwalb et al. [12], our method does not require
fine tuning of the thresholds on a validation set. Thus it is possible to
use it not just for testing, but also for training the object model, when
the thresholds of the cascade are still undefined (Section 3.5). More
importantly, the cascade of parts and our method are based on
complementary ideas and can be combined, yielding a multiplication
the speed-up factors. The combination of the two approaches can be
more than two order of magnitude faster than the baseline dynamic
programming inference algorithm [2] (Section 4).

2. Related work

In object category detection the goal is to identify and localize
in images natural objects such as people, cars, and bicycles.
Formally, we regard this as the problem of mapping an image x
to a label or interpretation y that specifies whether an instance of
the object is contained in the image and, if so, a bounding box
enclosing it.

In order to simplify analysis as well as learning, the map x↦y is
usually represented indirectly by a scoring function Sðx; yÞ, expres-
sing how well an interpretation y describes an image x. The
advantage is that the scoring function can have a simple form,
often linear in a vector of parameters w, i.e. Sðx; yÞ ¼ 〈w;Ψ ðx; yÞ〉.
Inferring the interpretation y from the image x reduces then to
finding which interpretations have a sufficiently large score,
typically by computing the maximizer y¼ arg maxŷ AYSðx; ŷÞ.
Unfortunately, maximizing the scoring function is often computa-
tionally quite challenging. Next, we briefly review the main ideas
that have been explored to address this issue.

Exhaustive and greedy search. If the interpretation space is
sufficiently small, an inference algorithm can score exhaustively
all interpretations yAY and pick the best one. Sometimes this
strategy can be applied even to continuous interpretations spaces
up to discretization. A notable example are sliding-window detec-
tors such as Dalal and Triggs [7]. A candidate interpretation y
obtained from a discretized model can be further improved by a
sequence of local greedy modifications, similar to gradient ascent.
Unfortunately local search can easily get stuck in local optima. In
less trivial cases, such as deformable part models, the interpreta-
tion space Y is far too complex for such simple strategies to suffice.

Sampling. By interpreting the score Sðx;yÞ as a posterior prob-
ability pðyjxÞ on the interpretations, inference can be reduced to the
problem of drawing samples y from pðyjxÞ (because the most likely
interpretations are also the ones with larger scores). Sampling ideas

have been explored in the context of sliding-window object detec-
tors in [14] demonstrating a two fold speed-ups over exhaustive
search. Similar in spirit, but based on prior knowledge about the
general shape of an object, are selective search [15] and objectness
[16]. The main speed-up of these methods is again due to a reduced
set of samples. However, in this case the samples are category
independent (.i.e the same bounding boxes are used to represent
different categories) so that the feature encoding can be computed
only once for all categories.

Branch-and-bound. It is sometimes possible to compute effi-
ciently upper bounds on the scores of large subsets Y0 �Y of
interpretations at once. If a better interpretation is found some-
where else, then the whole subset Y0 can then be removed without
further consideration. Branch-and-bound methods apply this idea
to a recursive partition of the interpretation space Y. If the splits
are balanced and the bounds sufficiently tight, these strategies can
find the optimal interpretation very quickly. This idea has been
popularized in the recent literature on sliding-window object
detectors by Lampert and Blaschko [17].

Dynamic programming (DP). Sometimes interpretations are
obtained by combining smaller interpretations of portions of the
image. For example, in pictorial structures [6] an object is an
arrangement y¼ ðy1;…; yNÞ of N object parts (e.g., the head, torso,
arms, and legs of a person), where yi is the location of the
corresponding part in the image. While there is a combinatorial
number of such arrangements, in constellation models [18], the
score decomposes as Sðy0; y1ÞþSðy0; y2Þþ⋯þSðy0; yNÞ, where y0 is
a reference part connected in a star to the other parts. Hence the
optimal arrangement can be obtained by finding the optimal
position of each part arg maxyi Sðy0; yiÞ relative to the reference
part y0, and then optimizing over the location of the reference.
Efficient inference extends to more complex topologies such as
trees and can be further improved under certain assumptions on
the scores, yielding to the efficient pictorial structures of [2]
(Section 3.1).

Cascades. A cascade considers cheaper scoring functions along
with Sðx; yÞ and uses them to prune quickly unpromising inter-
pretations y from consideration. Applied to an exhaustive search
of the possible object locations, this yields the well-known cascade
approach to sliding-window object detection [19]. The idea has
been popularized by its application to AdaBoost [20–23] and has
remained popular through the years, including applications to
multiple kernels detectors [24]. The same idea has been applied
directly to part-based models to either prune object locations by
visiting only a small number of parts [12] or by finding plausible
placements of the parts based on scoring functions with a lower
degree of part dependencies [25] or lower resolution parameters
[13]. Section 3.2 introduces an alternative coarse-to-fine cascade
design. A more general analysis of other problems related with fast
detection can be found in [26].

Recent methods. In parallel with the submission of this work
and during the revision period several new methods for speeding

Fig. 1. Coarse-to-fine inference. We propose a method for the fast inference of multi-resolution part based models. (a) example detections; (b) scores obtained by matching
the lowest resolution part (root filter) at all image locations; (c) scores obtained by matching the intermediate resolution parts, only at location selected based on the
response of the root part; (d) scores obtained by matching the high resolution parts, only at locations selected based on the intermediate resolution scores. A white space
indicates that the part is not matched at a certain image location, resulting in a computational saving. The saving increases with the resolution.
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