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a b s t r a c t

We address the class masking problem in multiclass linear discriminant analysis (LDA). In the multiclass
setting, LDA does not maximize each pairwise distance between classes, but rather maximizes the sum
of all pairwise distances. This results in serious overlaps between classes that are close to each other in
the input space, and degrades classification performance. Our research proposes Pareto Discriminant
Analysis (PARDA); an approach for multiclass discriminative analysis that builds over multiobjective
optimizing models. PARDA decomposes the multiclass problem to a set of objective functions, each
representing the distance between every pair of classes. Unlike existing LDA extensions that maximize
the sum of all distances, PARDA maximizes each pairwise distance to maximally separate all class means,
while minimizing the class overlap in the lower dimensional space. Experimental results on various data
sets show consistent and promising performance of PARDA when compared with well-known multiclass
LDA extensions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fisher Discriminant Analysis (FDA) originally developed by
Fisher in 1936 [1] is a technique for supervised linear dimension-
ality reduction that is optimal for classification under two assump-
tions: (i) the number of classes c is exactly two, and (ii) the
samples in each class are assumed to be generated from a multi-
variate Gaussian distribution with different means and equal
covariance matrices (homoscedastic data) [2]. In this context,
FDA is guaranteed to find a one dimensional subspace that will
classify the samples with the optimal error rate, Bayes error, and
the subspace is known to be Bayes optimal [2]. Rao [3] extended
this approach to the multiclass homoscedastic case ðc42Þ, under
the condition that the data features dZc (and assuming the
number of samples n4d). The resultant c�1 dimensional sub-
space is also guaranteed to be Bayes optimal, and the technique
has become known as Linear Discriminant Analysis (LDA). Rao also
noted that in the homoscedastic case, if the lower dimensional

subspace has dimensionality d0oc�1, the resultant subspace will
not be Bayes optimal. It is only recently that Hamsici and Martinez
[4] pushed the homoscedastic case further and derived a Bayes
optimal one dimensional subspace when c42.

When the equal covariance assumption does not hold for cZ2
(heteroscedastic data), Rao proposed to approximate the heterosce-
dastic problem with a homoscedastic setting and solve the approxi-
mated problem instead. His approximated problem considered that
all classes have different means but share a common covariance
matrix which is a weighted average of all the covariance matrices of
the original problem. This approximation matrix became known as
the pooled sample covariance matrix, or the average within-class
scatter matrix Sw. Rao's final solution became the well known
formulation based on the Rayleigh quotient of the between-class
scatter matrix Sb and Sw. The obtained subspace, however, is not
Bayes optimal for the original heteroscedastic problem.

Several researchers, backed by theoretical justifications, have
scrutinized the limitations and non-optimality (in terms of Bayes
error) of LDA when its strong assumptions do not hold and
proposed extensions derived from Gaussian assumptions [5–8]
and kernel methods [9,10] to generalize LDA to the multiclass
heteroscedastic case. The result was a plethora of algorithms that
have been reported to perform well in a variety of application
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domains, most notably face recognition (see [4,11–14] for a good
review of these methods).

Of particular interest is the extension proposed by De La Torre
and Kanade [15], namely Multimodal Oriented Discriminant Ana-
lysis (MODA), where it was shown that FDA's objective function is
a special case of a more general objective that maximizes the
Kullback–Leibler (KL) divergence [16] between two Gaussian
densities, when the two Gaussians share the same covariance
matrix. Note that the symmetric KL divergence considers the
difference in mean locations and the difference in covariance
matrices (size and orientation). Therefore, MODA searches for a
linear transformation that maximizes the symmetric KL diver-
gence between the two classes in the low dimensional subspace.

To account for the multiclass heteroscedastic case, MODA sums
over all KL divergences between every pair of different classes and
maximizes that sum in the lower dimensional subspace. This is
similar to LDA's objective function which, as shown by Loog et al.
[11], maximizes the sum of pairwise FDAs between all pairs of
different classes. Hence MODA is a consistent generalization of
FDA/LDA to multimodal Gaussian distributions with different
means and covariance matrices.

However, as noted by several researchers [11,12,17,18], even if all
the homoscedastic assumptions are satisfied, LDA and MODA suffer
from the serious problem of merging classes that are close to each
other in the original input space, a.k.a the class masking problem.
This is due to the fact that LDA and MODA shift the 2-class problem
to the multiclass setting by maximizing the sum of all KL diver-
gences, which is a suitable objective function when all classes are
equally distant from each other in terms of KL divergence.

Fig. 1A depicts a synthetic example for a 3-class problem with
three dimensional data. Traditional methods like LDA or MODA
find projections that maximize the sum of pairwise Mahalanobis
distance (for LDA) or the KL divergence (for MODA) between
pairwise classes. Note that the first term in the symmetric KL
divergence – for two multivariate Gaussians see Eq. (6) – and the
Mahalanobis distance (a special case from the KL divergence) are
positive quadratic distance functions. From the optimization of

minimax functions [19], it is known that the sum of positive
powered functions, ∑m

j ¼ 1½f j�p, where p41, is a smooth approx-
imation for max1r jrm½f j�p, as p is increasing, and hence
∑m

j ¼ 1½f j�p � ½f r �p where f r4 f j 8 jar. Using this argument,1 and
for p¼2, we argue that LDA is in fact maximizing a smooth
approximation of the maximum of quadratic distances. Similarly,
due to the quadratic distance in the first term of the symmetric KL
divergence (in the case of Gaussians), MODA also maximizes
a smooth approximation of the maximum divergences between
Gaussians. Hence, LDA and MODA intrinsically prefer solutions
that encourage maximizing the largest distance in the input space
to make it even larger in the lower dimensional subspace, i.e., LDA
and MODA put needless effort to maximize already distant classes
in the input space. This effect can be seen in Fig. 1B, where MODA's
projection gives relatively better increase in terms of KL diver-
gence to the classes that are farther away in the input space, while
it only makes a slight effort to separate between classes that are
closer to each other in the input space.

1.1. Contribution

We note that the multiclass problem for LDA and MODA defines
an independent objective function for each pair of different classes
that needs to be optimized, namely maximize the symmetric KL
divergence between every pair of different classes. Hence, the set
of all pairs of different classes defines an optimization problem
with multiple objective functions that share one final solution, and
if possible, they all need to be simultaneously optimized. Given this
perspective, maximizing the sum over all pairwise KL divergences
(or quadratic distances) does not consider each objective function
independently, since as explained above, maximizing that sum
approximates a max function that only encourages maximizing the
largest KL divergence. In other words, upgrading the problem of
learning a discriminant subspace from the 2-class setting to the

Fig. 1. (A) A Synthetic example of a 3-class problem with three dimensional data; L1 triangles, L2 squares, and L3 circles. The numbers shown on arrows indicate the KL
divergence between classes. The contribution of each pairwise divergence to the total divergence is 60%, 33%, and 7% for ðL1 ; L2Þ, ðL1; L3Þ, and ðL2 ; L3Þ, respectively. (B) and
(C) Projections using MODA and PARDA, respectively, on two-dimensional subspaces. Note that the divergences in the lower dimensional subspaces are always less than the
divergences in the original input space. This is due to the information loss incurred from the linear transformation and it shall be explained in Section 4.3. For MODA's
projection, the contribution of each pairwise divergence to the total divergence is 72%, 28%, and 3% for the same class ordering. Note that the largest KL divergence in the
input space increased in the lower dimensional subspace, and that the other (less) KL divergences became even smaller in the lower dimensional subspace – which is the
class masking effect. For PARDA's projection, the contribution of each pairwise divergence to the total divergence is 44%, 31%, and 25% for the same class ordering. Note that,
while MODA decreases the separation from 7% to 3% for (L2,L3), PARDA increases the separation to 25%.

1 This will be explained in more detail in Section 4.

K.T. Abou-Moustafa et al. / Pattern Recognition 48 (2015) 1863–18771864



Download English Version:

https://daneshyari.com/en/article/529938

Download Persian Version:

https://daneshyari.com/article/529938

Daneshyari.com

https://daneshyari.com/en/article/529938
https://daneshyari.com/article/529938
https://daneshyari.com

