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a b s t r a c t

In this paper, we study the problem of robust image fusion in the context of multi-frame super-resolu-
tion. Given multiple aligned noisy low-resolution images, image fusion produces a new image on a
high-resolution grid. Recently, kernel regression is presented as a powerful image fusion technique. How-
ever, in the presence of registration errors, the performance of kernel regression is quite poor. Therefore,
we present a new kernel regression method that takes these registration errors into account. Instead of
the ordinary least square metric, we employ the total least square metric, which allows for spatial per-
turbations of the image samples. We show in our experiments that our method is more robust to noise
and/or registration errors compared to the traditional kernel regression algorithm.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

In the last decades, the use of multiple images in the restoration
process has gained a lot of popularity among various researchers.
One of the image restoration problems being studied is the creation
of a clean high-resolution (HR) image from multiple noisy low-reso-
lution (LR) images, i.e., multi-frame super-resolution (SR) restoration
problem. Multi-frame SR restoration becomes most successful if
there is a non-integer displacement between the frequency-aliased
LR images [1]. A typical multi-frame SR framework consists of image
registration, image fusion and image deblurring [2]. After (proper)
alignment, the LR images provide samples at non-uniform or irreg-
ular positions on the HR grid. Image fusion then converts these LR

samples into samples that are placed on a regular Cartesian HR grid.
Finally, the HR image is deconvolved to obtain a clean and sharp
image. In this paper, we focus on the image fusion process in the
presence of registration errors and image noise.

From the interpolation point of view, there are two main
strategies to process non-uniformly distributed samples: we can
use the same interpolation kernel everywhere and fit these kernels
to the measurement data in a way that the reconstructed signal fits
the measurements or we can define tailored basis functions (such
as radial basis functions) that are better suited to the underlying
non-uniform structure. Note that in higher dimensions the B-spline

formalism is no longer applicable unless the grid is separable [3]. A
more general approach is to use radial basis functions, which are
closely related to splines as well, such as the membrane and
thin-plate splines [4]. In [5], each triangle patch in the spatial
Delaunay tessellation is approximated by a bivariate polynomial
in order to reconstruct the HR image. In [6], the reconstruction of
non-uniformly sampled signals is based on wavelets in a multires-
olution setting.

The main drawback of these interpolation techniques is the
sensitivity to image noise and in addition, a conflict could arise if
there are multiple noisy samples at the same position or very close
to each other.

Iterative simulate-and-correct approaches to non-uniform
interpolation are intuitively very simple. A well-known method
is the Papoulis–Gerchberg algorithm [7,8] in which alternately,
the known set of irregularly placed samples are projected onto
the HR grid and an ideal low-pass filter is applied on the HR image
to enforce band-limitation. In the more general POCS algorithms,
the ideal low-pass filter is substituted by other convex set
operations (e.g. Gaussian blur). Iterative back-projection methods
update the current estimated HR image by projecting the residual
errors between the observed and the simulated LR images [9].
The simulated LR images are simply obtained by resampling the
current HR image.

Alternatively, a very fast and memory efficient way to aggregate
multiple LR images into one HR image is the shift-and-add method.
This method assigns each pixel of the LR image to the nearest HR
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grid point after proper registration and upsampling. If several sam-
ples are located on the same HR grid point, the HR pixel is estimated
as the mean or median value of these samples [2]. Because the
samples are snapped to the nearest grid points, the shift-and-add
algorithm additionally generates positional errors on top of the
typical registration errors. This effect adds another kind of
correlated noise and artifacts to the reconstructed images such as
undesirable and false zipper artifacts around edges.

Another way to solve the problems of missing HR pixels is to
enlarge the footprint of each sample of the LR images. The vari-
able-pixel linear reconstruction algorithm, or informally known as
drizzling, computes each HR pixel as the weighted average from all
contributing surrounding samples [10]. A sample contributes to a
HR pixel if the HR grid position is lying inside a square window
around the sample, while the weight is determined by the degree
of overlap between this square window and the area of the HR pixel
lattice. An alternative to square windows is the use of adaptive
ellipses, which results in elliptical weighted area (EWA) filtering
techniques, where the ellipses are oriented according to the trans-
formation [11]. Both concepts interpret samples as tiny waterdrops
(hence the term drizzling) raining on the HR grid.

In the drizzling and EWA fusion techniques, all HR pixels within
the coverage of a sample receive the same weight no matter how
far the HR pixel is lying from the sample position. Assigning weights
in function of the spatial distance between the HR pixel position
and the sample position, results in the Nadaraya–Watson estimator
[12]. In [13], structure adaptive normalized convolution approxi-
mates the local signal by a set of polynomial basis functions. The
values on the HR grid is then computed from the combination of
these basis functions. In [14], kernel regression is presented as a
unified framework that combines the concepts of drizzling, EWA,
Nadaraya–Watson estimator and normalized convolution methods
resulting in a powerful image fusion technique.

The main drawback of the mentioned fusion methods is that
these techniques do not explicitly take positional or registration
errors into account. However, such errors are very common for reg-
istration algorithms used in practical SR applications, especially in
the presence of severe image noise. Some existing robust image fu-
sion and SR methods tackle image noise and outliers in general. In
[15], the authors proposed a robust higher-order normalized con-
volution, which is an extension of the work in [16], that adds extra
tonal weighting according to the confidence or certainty values. In
[13], the structure adaptive normalized convolution is iteratively
updated with a robust Gaussian-weighted error norm, in which
outlier pixels are automatically neglected. This works quite well
in SR applications in case there are only a very few misalignments
or images with heavy-tailed distributed noise, but it is not de-
signed in case a lot of (noisy) images are misaligned. In this paper,
we propose a new and improved data measurement model that
can cope with positional errors. From this formulation, we derive
a novel kernel regression method in the TLS sense.

In the following sections, we briefly discuss the kernel regres-
sion technique. We then unify the steering kernel regression with
the total least square formalism. We report numerical simulations
on image reconstruction problems and finally, we end this paper
with a conclusion.

2. Standard kernel regression

We briefly describe the kernel regression method for solving the
resampling problem in the ordinary least square sense (KROLS) as
proposed by Takeda et al. [14]. Suppose that we have to estimate
the pixel value f ðxÞ at position x on the HR grid. In the surrounding
neighbourhood, we have a set of p noisy measurements gi at

irregularly sampled positions xi, the data measurement model is
then given by:

gi ¼ f ðxiÞ þ ni; i ¼ 1; . . . ; p; ð1Þ

where f ð:Þ is the unknown HR image, which is also referred to as the
regression function and ni are independently and identically distrib-
uted zero-mean noise values. In a local neighbourhood, we can
approximate the regression function by its local expansion of
degree N. For example, we use the second order Taylor’s series
expansion ðN ¼ 2Þ of f ð�Þ, which is denoted by:

f ðxiÞ � f ðxÞ þ frf ðxÞgT ~xi þ
1
2

~xT
i fHf ðxÞg~xi

� b0 þ bT
1~xi þ ~xT

i b2~xi; ð2Þ

where ~xi ¼ xi � x; r and H are respectively the gradient and
Hessian operators. The coefficients of this polynomial are estimated
by the following weighted least-squares optimization problem
b̂ ¼ b̂0; b̂1; b̂2

n o� �
:

b̂ ¼ arg min
b

Xp

i¼1

gi � b0 � bT
1~xi � ~xT

i b2~xi
� �2

kHð~xiÞ; ð3Þ

which can easily be solved and where f̂ ðxÞ ¼ b̂0 is the estimated
pixel value at the position x on the HR grid, which we are looking
for. The kernel function kHð�Þ (which has typically a Gaussian or
exponential form) penalizes positions that are located further away
from the grid position and its strength is controlled by the
smoothing matrix H:

kHð~xiÞ ¼ jHj�1kðH�1~xiÞ: ð4Þ

In the special case of N ¼ 0, the solution of the kernel regression
algorithm corresponds to the Nadaraya–Watson estimator:

f̂ ðxÞ ¼ b̂0 ¼
Pp

i¼1gikHð~xiÞPp
i¼1kHð~xiÞ

: ð5Þ

This estimator only models locally flat signals, but does not model
edges, ridges and blobs very well. On the other hand, the estimator
given by Eq. (3) also takes these edges, ridges and blobs into
account.

In most applications, the 2� 2 smoothing matrix H is equal to
hI with h being the bandwidth parameter such that the kernel’s
footprint is isotropic. This is referred to as classic kernel regression.
Iteratively adapting the kernel’s footprint locally and anisotropi-
cally according to the samples prevent oversmoothing across
edges. Therefore, the use of anisotropic kernel functions is referred
to as steering kernel regression [14].

3. Proposed method

Multiframe SR algorithms require a very accurate estimation of
the positions of the LR samples on the fine HR grid. However, in
practice, small errors on the registration parameters or the use of
limited motion models cause relatively large positional errors of
the LR samples with the result that the quality of the SR generated
image degrades dramatically. Therefore, it is important that image
fusion also takes these spatial inaccuracies into account. The fol-
lowing improved data measurement model specifies that the rela-
tive positions xi � x can be subject to perturbations:

gi ¼ f ðxi þ uiÞ þ ni; i ¼ 1; . . . ;p; ð6Þ

where ui is the relative positional error of xi ¼ ðxi; yiÞ compared to
the position x ¼ ðx; yÞ on the HR grid; ui and ni are assumed to be
zero-mean distributed.

In case f is modeled by a linear regression function, we can find
the parameters via the basic TLS algorithm using the singular value
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