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In this work, we consider a variational restoration model for multiplicative noise removal problem. By
using a maximum a posteriori estimator, we propose a strictly convex objective functional whose mini-
mizer corresponds to the denoised image we want to recover. We incorporate the anisotropic total var-
iation regularization in the objective functional in order to preserve the edges well. A fast alternating
minimization algorithm is established to find the minimizer of the objective functional efficiently. We
also give the convergence of this minimization algorithm. A broad range of numerical results are given
to prove the effectiveness of our proposed model.
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1. Introduction

Image denoising problem has been widely studied in the areas
of image processing. Most of the literature deals with the additive
noise model. But in practice, there are other types of noise such as
multiplicative noise. It can also corrupt an image. In this paper, we
are interested in the multiplicative noise removal problem. This
problem can be expressed as follows: given a recorded image g :
@ c R? > R, which is the multiplication of an original image u
and a noise v:

g=uv. (1)

Here, 2 denotes the image domain that is simplified a rectangle do-
main in usual. The images we considered are 2-dimensional matrices
of size M x N. Without loss of generality, we can suppose that each
value of u and v are positive in the noise model. Due to this degraded
mechanism, nearly all the information of the original image may
vanish when it is distorted by multiplicative noise. Therefore, it is
important to remove multiplicative noise. The goal of restoration is
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to recover the true image u from the data g. The problem of removing
multiplicative noise occurs in many applications, such as synthetic
aperture radar, ultrasound imaging and laser imaging, see [14].

In literature, various variational approaches devoted to multi-
plicative noise removal have been proposed. The early variational
approach for multiplicative noise removal is the one by Rudin
et al. [14] as used for instance in [6,9,12,16]. By using a maximum
a posteriori (MAP) estimator, Aubert and Aujol [2] proposed a func-
tional whose minimizer corresponds to the denoised image to be
recovered. This functional is:

E(u) — /Q \Dul +;v./ (1ogu+§)dxdy, 2)

Q

where [, |Du| denotes the total variation of u and 2 is a regulariza-
tion parameter. In their method, they considered the Gamma noise
with mean one. Though the functional they proposed is not convex,
they still proved the existence of the minimizer, gave a sufficient
condition ensuring uniqueness and showed that a comparison prin-
ciple holds. They further gave some numerical examples illustrating
the capability of their model.

As a result of the drawback of the function (2) that is not convex
for all u, the solution for the method in [2] is likely not the global
optimal solution of (2). Therefore, the quality of the denoised im-
age may be not good. In view of this, Shi and Osher [15] presented
a convex model which adopts the fitting term in (2). They adopted
inverse scale space flow as denoising technique. Moreover, Huang
et al. [4] proposed a strictly convex objective functional for
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multiplicative noise removal by modifying the model in [15]. They
also incorporated another way of modified total variation regular-
ization in the objective function to recover image edges. In their
paper, they considered a new variable

z=logu.

Thus, the second term in (2) can be reformulated as
/ (2 + ge-?)dxdy. 3)
JQ

By using the new term in (3), the proposed unconstrained total var-
iation denoising problem is given as follows:

min /(z +ge?)dxdy + oy ]|z — wl|Z + o / IDw|, (4)
zw Jo JQ

where o7 and o, are positive regularization parameters. They devel-
oped an alternating minimization algorithm to find the minimizer
of (4) efficiently, and also proved the convergence of the minimizing
method.

For multiplicative noise removal problem, there exist some
other methods besides variational approaches, such as local linear
minimum mean square error approaches [8,10] and anisotropic
diffusion methods [1,7,17]. They will not be addressed in this
paper.

In this paper, we propose a strictly convex objective functional
for multiplicative noise removal problem by using anisotropic total
variation (ATV) and the fitting term in (2). We establish an alter-
nating minimization algorithm to find the minimizer of such objec-
tive functional efficiently, and give the convergence result of the
alternating minimization algorithm. The proposed algorithm is
easy to implement. And the computational speed is more than
six times of the method in [4]. The quality of restored images by
our proposed method is quite well. This can be seen in our exper-
imental results.

This paper is organized as follows: in Section 2, we recommend
our proposed model and the alternating minimizing algorithm. In
Section 3, we give the convergence result of the proposed method.
In Section 4, numerical results are given to show the effectiveness
of our method. In Section 5, we have a conclusion.

2. The ATV multiplicative denoising model

The aim of this section is to propose a strictly convex objective
functional for denoising images corrupted by multiplicative noise.
We incorporate anisotropic total variation and the fitting term in
(2) in the objective functional to recover image edges efficiently.
We start from the multiplicative noise model (1). In the following,
we assume that g, u, v are samples of the random variables G, U, V,
and denote the probability density function of a random variable X
by fx. Moreover, we also assume that the samples of noise on each
pixel x €  are mutually independent and identically distributed
(i.i.d.) with density function fj.

2.1. The proposed model

We suppose that the multiplicative noise in each pixel follows a
Gamma distribution with mean one and with its probability den-
sity function given by:

ol |
fu)={ T e v>0
0, <0,

where L > 0 is the number of looks (in general, L is a positive inte-
ger) and I'(-) is a Gamma function.

According to the maximum a posteriori estimation, the restored
image ! can be computed by

it = arg max fuc(u/g).
Applying Baye’s rule, it becomes

fou(glu)fu(u)
fe )

By using Proposition 3.1 in [2], we get:

it = argmax
u

Lol-1
fawteln) =Fo )y = piye ©)

Taking the logarithm transformation into account, we assume that
the image prior fy(u) as follows:

Ju(u) = fuw (ulw)fw(w),

with

fuw(ulw) o exp(—ou || logu —w]%),
(W) oc exp(—ota (Wt + [Iwyll;1)).

where o,y and o, are two positive constants. Herein, we suppose that
the difference between logu and w obeys a Gaussian distribution
and w obeys a anisotropic total variation prior. Therefore, we have

fu(u) o exp(—ou|| log t — wI[i2) exp(—0 (|[Wxll s + [wyll,r)- (7
Since f5(g) is a constant, (5) can be reformulated as
u= 3rgmuaXfG\U(g|u)fU\W(u\W) w(w). (8)

For the above problem, we take logarithm transformation in order
to transform multiplication to summation. Therefore, (8) can be
rewritten as the following problem:

U = argmin (- logfeu (g|u) — log fuw (ulw) — logfw (w)). 9

Using (6)-(8), we see that (9) amounts to:

il = arg min Z <L<logu(x,y) +g(x,y)> + oy logu(x,y) — w|%
u (xy)eQ u(X./y)

oWl + HWyHLl)>- (10)

Based on the previous computation, we propose the following min-
imization problem by considering a new variable z = logu:

min | (z-+ge)dxdy + fulle =ik + Balwslls + Iwyllo). (1)

It is straightforward to check that (11) is equivalent to (9).

We will explain the proposed model. For the transformation
z =logu, it is obvious that when u includes an edge, z also contains
an edge at the same location, i.e. the logarithm transformation
preserves image edges. In view of this, we can consider z as an im-
age in the logarithm domain. We note that the argument u should
be positive in the objective functional (2). It will affect the quality
of restoration image. However, in our model (11), the argument z
can be any real number, and the corresponding u = €* is still posi-
tive. The main advantage of the first term in (11) is that its second
derivative with respect to z is equal to ge %, which is always greater
than zero. Therefore, this term is strictly convex for all z. We incor-
porate the fitting term ||z — w||fz in(11). The parameter $; measures
the trade off between an image obtained by a maximum a posteriori
estimation and a anisotropic total variation denoised image w. The
parameter f3, is used to measure the amount of regularization to a
denoising image w. The anisotropic total variation can preserve
the edges well because its diffusion is adapted to the direction
of the local image features. It means that the diffusion strength
along the direction which is vertical to the direction of local
features is smaller than it along the direction of the local features.
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