
Efficient subgraph matching using topological node feature constraints

Nicholas Dahma,n, Horst Bunke b, Terry Caelli c, Yongsheng Gao a

a School of Engineering, Griffith University, 170 Kessels Rd, Nathan, Brisbane, QLD, Australia
b Institute for Computer Science and Applied Mathematics, University of Bern, Switzerland
c Electrical and Electronic Engineering, University of Melbourne, Australia

a r t i c l e i n f o

Article history:
Received 31 August 2013
Received in revised form
14 May 2014
Accepted 28 May 2014
Available online 12 June 2014

Keywords:
Graph matching
Subgraph isomorphism
Topological node features

a b s t r a c t

This paper presents techniques designed to minimise the number of states which are explored during
subgraph isomorphism detection. A set of advanced topological node features, calculated from n-
neighbourhood graphs, is presented and shown to outperform existing features. Further, the pruning
effectiveness of both the new and existing topological node features is significantly improved through
the introduction of strengthening techniques. In addition to topological node features, these strengthen-
ing techniques can also be used to enhance application-specific node labels using a proposed novel
extension to existing pruning algorithms. Through the combination of these techniques, the number of
explored search states can be reduced to near-optimal levels.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In structural pattern recognition, graphs are used to provide
meaningful representations of objects and patterns, as well as
more abstract descriptions. The representative power of graphs
lies in their ability to characterise multiple pieces of information,
as well as the relationships between them. These graphs can be
used on a variety of applications including network analysis [1],
face recognition [2], and image segmentation [3]. However at the
heart of graph theory is the problem of graph matching, which
attempts to find a way to map one graph onto another in such a
way that both the topological structure and the node and edge
labels are matched. For domains where data is noisy, an identical
match may not be possible, so an inexact graph matching algo-
rithm is used to search for the closest match, minimising some
similarity function. In this paper, we deal only with exact graph
matching, where a match must be perfect and error-free. Exact
graph matching, due to its nature, is generally used on problems
where the data is precise and does not contain noise. Examples of
exact graph matching problems include finding chemical simila-
rities [4] or substructures [5], protein–protein interaction net-
works [6], social network analysis [7], and in the semantic web [8].

Within exact graph matching, there are three graph isomorph-
ism problems. These are, in increasing order of complexity, graph
isomorphism, subgraph isomorphism, and maximum common
subgraph isomorphism. While algorithms for all of these problems

have an exponential time complexity in the general case, signifi-
cant advances have been made towards making these problems
tractable. In this paper we focus on techniques applicable to graph
and subgraph isomorphism, with particular emphasis on non-
induced subgraph isomorphism. Reviews of algorithms and
approaches for maximum common subgraph isomorphism can
be found in [9–11]. Those looking for a complete survey of graph
matching techniques are directed to [9] for the years up to 2004,
and [12] for those since.

One key concept in speeding up graph and subgraph isomorph-
ism problems is that of a topological node feature (TNF). A TNF is a
value assigned to a node which encodes information about the
local graph topology into a simple value. For example, the simplest
TNF, namely the node degree, simply counts the number of
adjacent nodes. Topological node features are also known as
subgraph isomorphism consistents or, in the case of graph iso-
morphism, invariants.

In graph isomorphism, the early Nauty algorithm [13] by McKay
was able to make significant advances beyond existing algorithms
by using TNFs and a strengthening procedure similar to the tree
index method that is presented in this paper. Using these techni-
ques, Nauty is able to effectively describe the graph topology
surrounding each node, eliminating mappings to any nodes where
the topology is not identical. This idea was extended by Sorlin and
Solnon to create the IDL algorithm [14]. Some polynomial-time
algorithms have been developed for special cases of graph iso-
morphism, such as planar graphs [15] and bounded valence graphs
[16]. A recent paper by Fankhauser et al. [17] presents a polynomial-
time algorithm for graph isomorphism in the general case. Their
method is suboptimal, in that some graph pairs are rejected due to
unresolved permutations. However the number of rejected pairs

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

http://dx.doi.org/10.1016/j.patcog.2014.05.018
0031-3203/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ61 7 3735 3753; fax.: þ61 7 3735 5198.
E-mail addresses: n.dahm@griffith.edu.au (N. Dahm),

bunke@iam.unibe.ch (H. Bunke), terry.caelli@gmail.com (T. Caelli),
yongsheng.gao@griffith.edu.au (Y. Gao).

Pattern Recognition 48 (2015) 317–330

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2014.05.018
http://dx.doi.org/10.1016/j.patcog.2014.05.018
http://dx.doi.org/10.1016/j.patcog.2014.05.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.05.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.05.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.05.018&domain=pdf
mailto:n.dahm@griffith.edu.au
mailto:bunke@iam.unibe.ch
mailto:terry.caelli@gmail.com
mailto:yongsheng.gao@griffith.edu.au
http://dx.doi.org/10.1016/j.patcog.2014.05.018


was shown to be only 11 out of 1 620 000 graph pairs (0.00068%)
from the MIVIA (previously SIVA) laboratory graph database [18].

Extending such concepts to subgraph isomorphism is challen-
ging because, while the subgraph may exist within the full graph,
the additional nodes and edges in the full graph create noise for
TNFs. This essentially means that instead of searching for TNFs
with identical values, algorithms must ensure that TNF values
from subgraph nodes are less than or equal to the corresponding
TNF values from the full graph. One of the earliest and most
influential subgraph isomorphism algorithms was Ullmann's algo-
rithm [19]. Based on a tree search with backtracking, and a
refinement procedure to prune the search tree, Ullmann's algo-
rithm maintained state of the art performance until being super-
seded by the VF2 algorithm. The VF2 algorithm by Cordella et al.
[20] has established itself as the benchmark for subgraph iso-
morphism algorithms due to its impressive speed, outperforming
Ullmann's in almost all cases. To achieve such impressive results,
VF2 takes subsets of the degree TNF, creating either two values (for
undirected graphs), or six values (for directed graphs). The effect of
separating the degree value into multiple smaller values is that it
reduces the chance that TNF noise will prevent an invalid mapping
from being detected. Despite the impressive reduction of the
computation complexity provided by VF2, the exponential nature
of the subgraph isomorphism problem prevents such algorithms
from being practical as the number of nodes increases [21]. An
updated version of Ullmann's algorithm was recently published
[22], which includes a technique called focus search. Focus search
avoids some unnecessary backup and restore operations on the
bit-vector domains (representing compatible node mappings)
during the search.

A number of recent papers have shown that subgraph iso-
morphism can be efficiently solved by utilising constraint program-
ming (CP). An early example of this is the nRFþ algorithm by
Larrosa and Valiente [23], which is an extension of the non-binary
really full look ahead (nRF) algorithm. The ILF algorithm by
Zampelli et al. [24] explored the use of CP with multiple TNFs.
The results show that ILF outperforms VF2 on most cases, even
when restricted to only the TNF of degree. Another recent CP
paper is the local all different (LAD) algorithm by Solnon [25]. The
LAD constraint ensures that for every compatible node mapping,
the nodes adjacent to the subgraph node can be uniquely mapped
to nodes adjacent to the full graph node. Each mapping can be
validated in this way by running the Hopcroft–Karp algorithm
[26]. Given x nodes adjacent to the subgraph node and y nodes
adjacent to the full graph node, the complexity of validating a
single mapping is Oðxy

ffiffiffiffiffiffiffiffiffiffiffiffi
xþyÞ

p
in the worst case. Despite the high

computational complexity of this step, the pruning power gained
from it allows the LAD algorithm to outperform even the ILF
algorithm, on most cases.

This paper presents a number of techniques which can be used to
speed up subgraph isomorphism through the creation, strengthen-
ing, and effective use of TNFs. The problem of subgraph isomorphism
is formalised in Section 2, as are other definitions and notations used
in this paper. Section 3 introduces the concept of an n-neighbour-
hood, and proposes some novel topological features which can be
calculated from it. In Section 4, the unified framework is presented,
which consists of three TNF strengthening techniques. These
strengthening techniques, introduced in Sections 4.1–4.3, can be
applied to TNFs, as well as application-specific node labels. Section
4.4 then shows how these concepts can be combined to create
strengthened features that are resistant to noise. Similar to [21], the
techniques discussed in Sections 3 and 4 are designed so that they
may be utilised to enhance any subgraph isomorphism algorithm.

An earlier version of this paper appeared in [27]. In this revised
and extended version, we provide richer descriptions of the pruning
techniques, and employ an improved algorithm for matching nodes

using the tree index, which is considerably faster than its predeces-
sor. We also introduce the novel SINEE algorithm in Section 5, which
has been specifically designed to maximise the effectiveness of
topological node features, as well as the strengthening framework.
To evaluate the effectiveness of SINEE, Section 6 provides a more
comprehensive experimental analysis than [27], both analytically and
practically. Finally, in Section 7, a number of conclusions are drawn
from the experimental results, and future extensions of this work are
discussed.

2. Definitions and notations

The graphs used in this paper are simple (no self-loops, no
duplicate edges) unlabelled graphs. However, the adaptation of the
techniques discussed in this paper to non-simple graphs is trivial.

Definition 1 (Graph). A graph is defined as an ordered pair
G¼ ðV ; EÞ, where V ¼ fv1;…; vng is a set of vertices and EDV � V
is a set of edges.

The edges of a graph may be either directed E¼ fðvx; vyÞ;…g or
undirected E¼ ffvx; vyg;…g. For clarity, undirected graphs are used
to introduce new concepts. The extension of these concepts to
directed graphs is also given, for cases where such an extension is
non-trivial.

Subgraph isomorphism detection is performed using a depth-
first search. Each state in the search tree represents a permutation
of mappings.

Definition 2 (Subgraph Isomorphism State). A subgraph isomorph-
ism state S is a quadruple S¼ ðGf ;Gs;M;AÞ, where Gf is the full
graph, Gs is the subgraph, M is the set of valid mappings
M¼ fðvaAVf-vbAVsÞ;…g, from full graph nodes to subgraph
nodes, and A is the set of assigned mappings, such that ADM.

At the root of the search tree is the initial state, where A¼∅.
The leaf nodes of the search tree are (possibly invalid) subgraph
isomorphisms, where jAj ¼ jVsj.

3. Topological n-neighbourhood features

A topological node feature is defined as any feature which is
calculated solely from the graph topology, as viewed from a
particular node. Existing TNFs utilised for subgraph isomorphism
include:

� degree: The number of adjacent nodes.
� clusterc (clustering coefficient): The number of edges between

adjacent nodes (this does not include edges to the node being
evaluated).

� ncliquesk: The number of cliques of size k that include a
particular node.

� nwalkspk: The number of walks of length k that pass through a
particular node.

Both ncliquesk and nwalkspk are vectors, holding values for each
different k.

An n-neighbourhood (nN) of a node v is an induced subgraph
formed from all the nodes that can be reached within n steps from v.
This induced subgraph is centered around node v and not only
contains all nodes up to n steps away, but also contains all edges
between those nodes, as depicted in Fig. 1. It is denoted as nNðv;nÞ. It
should be noted that while nNs are induced subgraphs, the structure
they describe can be used for both induced, and non-induced,
subgraph isomorphism. For each graph node v, a unique nN may
be created for each value n¼ 1;2;…;m, where nNðv;mÞ ¼ G (the

N. Dahm et al. / Pattern Recognition 48 (2015) 317–330318



Download	English	Version:

https://daneshyari.com/en/article/529994

Download	Persian	Version:

https://daneshyari.com/article/529994

Daneshyari.com

https://daneshyari.com/en/article/529994
https://daneshyari.com/article/529994
https://daneshyari.com/

