
Approximation of graph edit distance based on Hausdorff matching

Andreas Fischer a,n, Ching Y. Suen a, Volkmar Frinken b, Kaspar Riesen c, Horst Bunke d

a Concordia University, Centre for Pattern Recognition and Machine Intelligence, 1455 de Maisonneuve Blvd West, Montreal, Canada, H3G 1M8
b Kyushu University, Faculty of Information Science and Electrical Engineering, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
c University of Applied Sciences and Arts Northwestern Switzerland, Riggenbachstrasse 16, 4600 Olten, Switzerland
d University of Bern, Institute of Computer Science and Applied Mathematics, Neubrückstrasse 10, 3012 Bern, Switzerland

a r t i c l e i n f o

Article history:
Received 27 September 2013
Received in revised form
8 May 2014
Accepted 21 July 2014
Available online 1 August 2014

Keywords:
Graph edit distance
Hausdorff distance
Approximation algorithms
Graph classification
Graph embedding
Handwriting recognition

a b s t r a c t

Graph edit distance is a powerful and flexible method for error-tolerant graph matching. Yet it can only
be calculated for small graphs in practice due to its exponential time complexity when considering
unconstrained graphs. In this paper we propose a quadratic time approximation of graph edit distance
based on Hausdorff matching. In a series of experiments we analyze the performance of the proposed
Hausdorff edit distance in the context of graph classification and compare it with a cubic time algorithm
based on the assignment problem. Investigated applications include nearest neighbor classification of
graphs representing letter drawings, fingerprints, and molecular compounds as well as hidden Markov
model classification of vector space embedded graphs representing handwriting. In many cases, a
substantial speedup is achieved with only a minor loss in accuracy or, in one case, even with a gain in
accuracy. Overall, the proposed Hausdorff edit distance shows a promising potential in terms of
flexibility, efficiency, and accuracy.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to their ability to represent properties of objects and
binary relationships at the same time, graphs have found wide-
spread applications in pattern recognition [1–3]. Graph-based
representations have been successfully used in various fields of
research including bioinformatics [4], web content mining [5],
image classification [6], graphical symbol recognition [7], charac-
ter recognition [8], and computer network analysis [9] to name
just a few.

Yet, after the initial enthusiasm induced by the representa-
tional power and flexibility of graphs in the late seventies, a
number of problems became evident. First, working with graphs is
unequally more challenging than working with feature vectors, as
even basic mathematical operations cannot be defined in a
standard way, but must be provided depending on the specific
application. Secondly, graphs suffer from their own flexibility. For
instance, computing the distance of a pair of objects, which is an
important task in many areas, is linear in the number of data items
in the case where vectors are employed. The same task for graphs,
however, is much more complex, since one cannot simply compare

the sets of nodes and edges, which are generally unordered and of
different sizes.

In the last decades various procedures for evaluating proximity,
that is similarity or dissimilarity, of graphs have been proposed in
the literature [1]. The process of evaluating the similarity of two
graphs is commonly referred to as graph matching. Roughly
speaking, there are two categories of tasks in graph matching,
viz. exact graph matching and error-tolerant graph matching. In the
former case, for a matching to be successful, it is required that a
strict correspondence is found between the two graphs being
matched, or at least among their subparts. Prominent examples
include methods for graph and subgraph isomorphism [10,11].

Due to the intrinsic variability of the objects under considera-
tion and the noise resulting from the graph extraction process, it
cannot be expected that two graphs representing the same class of
objects are completely, or at least to a large part, identical in their
structure. Especially if the nodes and edges of a graph are
attributed with real-valued labels, it is most probable that the
actual graphs differ somewhat from their ideal model. Obviously,
such noise crucially hampers the applicability of exact matching
techniques, and consequently exact graph matching is rarely used
in real-world pattern recognition applications. In order to over-
come this drawback, various approaches to error-tolerant graph
matching have been proposed [1].

Graph edit distance (GED) offers an intuitive way to integrate
tolerance to errors into the graph matching process and is applicable

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

http://dx.doi.org/10.1016/j.patcog.2014.07.015
0031-3203/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ1 514 848 2424x7950; fax: þ1 514 848 2830.
E-mail address: andreas.fischer@polymtl.ca (A. Fischer).

Pattern Recognition 48 (2015) 331–343

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2014.07.015
http://dx.doi.org/10.1016/j.patcog.2014.07.015
http://dx.doi.org/10.1016/j.patcog.2014.07.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.07.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.07.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.07.015&domain=pdf
mailto:andreas.fischer@polymtl.ca
http://dx.doi.org/10.1016/j.patcog.2014.07.015


to virtually all types of graphs. Originally, edit distance has been
developed for string matching [12]. A generalization to graphs first
emerged in [13] in the context of error-correcting isomorphism and
has been extended to a general graph distance subsequently [14,15].
The key idea is to model structural variation by edit operations
reflecting modifications in structure and labeling. A standard set of
edit operations is given by deletions, insertions, and substitutions of
both nodes and edges.1 Given two graphs, the idea of graph edit
distance is to delete some nodes and edges in the first graph,
substitute (relabel) some of the remaining nodes and edges, and
insert some new nodes and edges such that the first graph is
transformed into the second graph. An edit cost is assigned to each
edit operation and the graph edit distance corresponds with the
minimum cost among all valid graph transformations. It is possible
to integrate domain specific knowledge about object similarity, if
available, when defining the costs of the elementary edit operations.
Furthermore, if in a particular case prior domain knowledge is not
available, automatic procedures for learning the edit costs from a set
of sample graphs exist [17–19].

The flexibility of graph edit distance to cope with any kind of
graph structure, node labels, and edge labels is an advantage over
other graph matching methods that often impose constraints on
the graphs. For example spectral methods [20,21], which are based
on the eigendecomposition of the adjacency or Laplacian matrix of
a graph, primarily target unlabeled graphs or allow only severely
constrained label alphabets. Other common constraints include
restrictions to ordered graphs [22], planar graphs [23,24],
bounded-valence graphs [25], trees [26], and graphs with unique
node labels [9]. The absence of such constraints makes graph edit
distance applicable to a wide range of real-world applications.

However, the flexibility comes at the cost of high computa-
tional complexity. Optimal algorithms for computing the graph
edit distance are typically based on combinatorial search proce-
dures that explore the space of all valid graph transformations.
Often An search techniques using some heuristics are employed
[27–30]. An is a best-first search algorithm [31] which is complete
and admissible, that is it always finds a solution if there is one and
it never overestimates the cost of reaching the goal. The time
complexity is exponential with respect to the number of nodes of
the involved graphs, thus constraining graph edit distance to small
graphs in practice.

In recent years, a number of methods addressing the high
computational complexity of graph edit distance computation
have been proposed. Probabilistic relaxation labeling [32,33]
adopts a Bayesian perspective on graph edit distance and itera-
tively applies edit operations to improve a maximum a posteriori
criterion. As an alternative to this hill climbing approach, genetic
algorithms have been proposed for optimization in [34]. In either
case, the method is usually more efficient than An search but is
prone to finding only local optima in the search space. The same
holds true for the methods proposed in [35,36] where a rando-
mized construction of initial mappings is followed by a local
search procedure. For An search, efficiency improvements by
means of suboptimal beam search techniques are proposed in
[37]. In [38], a linear programming method for computing the edit
distance of graphs with unlabeled edges is reported. Based on the
assignment problem, a polynomial time calculation of upper and
lower bounds is suggested.

Assignment edit distance (AED) is a general method to approx-
imate graph edit distance for unconstrained graphs in cubic time
with respect to the number of graph nodes. Originally, it has been
introduced as a novel heuristic for optimal graph edit distance

computation based on fast node assignments [30]. This heuristic
has eventually been used in [39] as a stand alone graph edit
distance approximation. The method is based on a fast optimiza-
tion procedure mapping nodes and their local structure of one
graph to nodes and their local structure of another graph. In order
to find an optimal match between the sets of local structure the
Hungarian algorithm [40],2 is deployed. Since only local structures
are matched the resulting assignment edit distance is not optimal.
Yet a series of graph classification experiments empirically demon-
strated a substantial speedup without significant loss in accuracy
when using this approximation algorithm [39]. Further speedups
were reported in [42] with a different cubic time assignment
algorithm, viz. the algorithm of Jonker and Volgenant [43]. In
recent years, the algorithmic framework of assignment edit dis-
tance has been successfully employed for several applications
where graphs have been embedded in vector spaces [44]. In [45]
the method has been adopted to the problem of exact graph
matching, namely graph isomorphism and subgraph isomorphism.
The graph matching framework has been made publicly available
as a stand-alone software tool [46].3

In this paper, we continue this line of research by introducing
the Hausdorff edit distance (HED), which approximates the graph
edit distance more efficiently in quadratic rather than cubic time.
It combines the idea of assignment edit distance, that is to find a
match between nodes and their local structure, with a more
efficient pairwise node matching. In a straight-forward fashion,
each node of one graph is compared with each node of the other
graph similar to comparing subsets of a metric space using the
Hausdorff distance [47]. Taking into account costs for deletion,
substitution, and insertion of a node and its adjacent edges, an
optimal match is found for each node individually. The sum of all
matching costs is then considered as a distance measure which is
less than or equal to the graph edit distance.

Despite the fact that an optimal match is found for each node
individually and not for all nodes conjointly, the proposed Haus-
dorff edit distance performs astonishingly well in a series of graph
classification experiments. They empirically demonstrate a sub-
stantial speedup when compared with graph edit distance and
assignment edit distance. In many cases, the speedup is achieved
with only a minor loss in accuracy or, in one case, even with a gain
in accuracy. We report results for nearest neighbor classification of
graphs representing letter drawings, fingerprints, and molecular
compounds. Furthermore, we have investigated the Hausdorff edit
distance in the context of a more complex document analysis
system for automatic handwriting recognition in historical
manuscripts.

The remainder of this paper is organized as follows. First, a
description of graph edit distance and its cubic time approxima-
tion is provided in Section 2. Afterwards, the proposed Hausdorff
edit distance is detailed in Section 3. Graph classification experi-
ments are first presented for k-nearest neighbor recognition in
Section 4, followed by a report on handwriting recognition using
graph embedding and hidden Markov models in Section 5. Finally,
we draw some conclusions in Section 6.

Note that this paper is an extended version of an earlier
conference publication [48]. While the previous publication was
focused on the handwriting recognition application, this paper
provides a generalization of the algorithm that is able to cope with
virtually all types of graphs. The detailed description of the
proposed Hausdorff edit distance in Section 3 is completely new

1 Note that other operations, such as merging and splitting of nodes have been
proposed [16].

2 The Hungarian algorithm is a refinement of an earlier version by Kuhn [41]
and is also referred to as Munkres or Kuhn–Munkres algorithm.

3 http://www.fhnw.ch/wirtschaft/iwi/gmt.

A. Fischer et al. / Pattern Recognition 48 (2015) 331–343332

http://www.fhnw.ch/wirtschaft/iwi/gmt


Download English Version:

https://daneshyari.com/en/article/529995

Download Persian Version:

https://daneshyari.com/article/529995

Daneshyari.com

https://daneshyari.com/en/article/529995
https://daneshyari.com/article/529995
https://daneshyari.com

