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a b s t r a c t

Determining the spatial motion of a moving camera from a video is a classical problem in computer
vision. The difficulty of this problem is that the flow pattern directly observable in the video is generally
not the complete flow pattern induced by the motion, but only the partial information of it, which is
known as the normal flow. In this paper, we present a direct method which neither requires the
establishment of feature correspondences nor the recovery of optical flow between two image frames,
but we directly utilize all observable normal flow data to recover the camera motion. We propose a two-
stage iterative algorithm to search the solution in the motion space in a coarse-to-fine framework. The
first stage involves the use of the direction part of the normal flow. Each of these normal flow data can
provide a constrained solution space to the direction of motion. The intersection of the motion solutions
from all the available normal flow data can reduce the motion ambiguity to a certain extent. We then use
the globality of the rotational magnitude to all image positions to constrain the motion parameters
further. Once the camera motion is determined, the depth map of the imaged scene (up to an arbitrary
scale) can be recovered. Experimental results on synthetic data and real images are provided to reveal
the performance of the proposed method.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A camera which moves in a static scene generally induces a
certain apparent flow pattern in the acquired video. The capabilities
of revealing the position, moving direction, and other dynamic
information from the video are essential for higher level tasks such
as autonomous navigation, visual control, human action under-
standing, and more. Due to the well-known ambiguity between
motion speed and object size-and-depth, from monocular video
alone, the translation magnitude of the motion is generally not
determinable and left as an overall arbitrary scale related to object
depth. The other motion parameters are determinable. In other
words, if we describe the spatial motion as consisting of a transla-
tion component t (a 3-vector, whose direction and magnitude
represent the direction and magnitude of the translation in space
respectively) and a rotation component w (also a 3-vector, which
represents the rotation in space in angle-axis form), our task is to
determine the direction of t and the full w.

The usual approaches to determine motion parameters are
based either on establishing feature correspondences [1,2], optical

flows (also known full flows) [3–7], or normal flows (so-called
direct methods) [8–13], between two image frames in a video.

The correspondence-based methods require tracking of distinct
features which might not be always available in the video. The
existence of repetitive patterns can cause ambiguity in establish-
ing the correct correspondences. On the other hand, the optical
flow induced by the spatial motion at any image position is
observable generally only partially. The apparent flow, termed
the normal flow, is the component of the full flow along or
opposite to the direction of the local intensity gradient. The partial
observability of the flow is what makes motion determination
a challenge. Recovery of optical flow often requires piecewise-
smooth flow. However, this assumption is not valid near depth
discontinuities. The state-of-the-art methods (such as [14–17])
recover optical flow by minimizing an energy functional.
An accurate optical flow field cannot be obtained unless there is
a good compromise between the data term and the regularization
term. Interpolation of optical flow from textured image region to
homogeneous image region is often necessary. However, the
minimization process is computationally expensive and often
requires the use of graphical processing unit (GPU) or multi-core
central processing unit (CPU) in order to achieve real-time
performance. For instance, a recent work used 7 min to compute
the optical flow for an image pair having resolution 640�480 on
a rather high performance laptop computer [17]. On the contrary,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

http://dx.doi.org/10.1016/j.patcog.2014.08.012
0031-3203/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: twhui1@mae.cuhk.edu.hk (T.-W. Hui),

rchung@vtc.edu.hk (R. Chung).

Pattern Recognition 48 (2015) 422–437

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2014.08.012
http://dx.doi.org/10.1016/j.patcog.2014.08.012
http://dx.doi.org/10.1016/j.patcog.2014.08.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.08.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.08.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.08.012&domain=pdf
mailto:twhui1@mae.cuhk.edu.hk
mailto:rchung@vtc.edu.hk
http://dx.doi.org/10.1016/j.patcog.2014.08.012


the direct methods determine the motion parameters from normal
flow which is directly measurable from the spatial-temporal
intensity gradient [18]. They demand relatively less computation
resource than those methods based on feature correspondence
and optical flow. Moreover, normal flow also can be measured by
custom-designed vision sensor directly [19]. Due to the above
advantages, we investigate the use of normal flow to determine
motion parameters.

In Fig. 1, we show the recovered depth maps of a frame in the
Fountain sequence [7] using different normal flows with the known
camera motion. We first project the ground-truth optical flow along
the local intensity gradient to form the normal flow. Fig. 1c
illustrates some parts of the optical flow field and the normal flow
field. It should be noticed that no normal flow exists in some parts
of the image space because the spatial-temporal intensity gradients
are very weak there. Fig. 1d shows the resulted depth map which
is very close to the ground truth. Fig. 1e illustrates the recovered
depth map using the normal flow computed from the spatial-
temporal intensity gradient without prior knowledge about the full
flow. We can also observe that the errors in the depth map are
relatively larger at the image positions corresponding to the regions
of the scene that are far away from the camera. The only difference
between the above two normal flows is the difference sources of
the temporal intensity gradient. Since the direction part of normal
flow mainly depends on the spatial intensity gradient,1 we can
conclude that most of the normal flow extraction errors are indeed
originated from the magnitude part. This can be also explained from
the fact that the spatial resolution of an image sequence is generally
higher than its temporal resolution. This provides us the insight that
postponing the use of the magnitude component of normal flow

can improve the accuracy and robustness for determining the
spatial motion.

In this article, we provide a direct method to determine the
camera motion in a video. Some preliminary results have been
published in our previous work [20]. Our contribution is three-
fold. First, we separately utilize the direction and magnitude
components of normal flow to determine the camera motion. This
makes the motion estimation more robust to noise. Second, the
separation of two components facilitates the development of
the two constraints. One is related to the direction component of
the normal flow – the Apparent Flow Direction (AFD) constraint,
and the other to the globality of the rotational motion magnitude
at all image positions – the Apparent Flow Magnitude (AFM)
constraint. The AFD constraint manifests itself as a system of linear
inequalities that bind the motion parameters using only the
direction component of the flow field. The AFM constraint serves
to reduce motion ambiguity further by insisting that every image
position must has a component of normal flow magnitude that is
consistent with the same rotation magnitude of the spatial motion.
Third, we make the motion estimation process more computa-
tionally efficient by exploiting the two constraints in a two-stage
iterative voting process using a coarse-to-fine framework.

2. Related works

2.1. Optical flow

Starting from the seminal works by Horn and Shunck [21] and
Lucas and Kanade [22], many solutions have been proposed for
dealing with the shortcomings of previous models. Global approach
such as the work from Horn and Shunck [21] yields optical flow
with full density, but it is experimentally known to be more
sensitive to noise. Local method such as the work from Lucas and
Kanade [22] is relatively more robust under noise, but it does not
give dense flow field. Bruhn et al. combined the local and global
methods to give a compromise between the two approaches [23].
Weickert and Schnörr [24] extended the spatial flow-driven

Fig. 1. (a) An image frame in the Fountain sequence [7]. (b) The ground-truth depth map. Closer parts appear cooler color in the image. (c) The ground-truth optical flow
vectors (red arrows) and the actually computed normal flow vectors (blue arrows) near the top of the fountain. (d) The recovered depth map using the normal flow by
projecting the ground-truth optical flow along local intensity gradient. (e) The recovered depth map using the actually computed normal flow. The depth map is denoised by
a median filter (kernel size: 9�9). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

1 Strictly speaking, the direction of each normal flow vector depends on the
spatial intensity gradient and the sign of the temporal intensity gradient. But if we
remove those normal flow vectors which have very small temporal gradient
magnitude, then the direction parts are error-free from the temporal gradient.
Therefore, it is safe to say that the direction part of normal flow mainly depends on
the spatial gradient.
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