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a b s t r a c t

In this paper, we investigate the contribution of dynamic evolution of 3D faces to identity recognition.
To this end, we adopt a subspace representation of the flow of curvature-maps computed on 3D facial
frames of a sequence, after normalizing their pose. Such representation allows us to embody the shape as
well as its temporal evolution within the same subspace representation. Dictionary learning and sparse
coding over the space of fixed-dimensional subspaces, called Grassmann manifold, have been used
to perform face recognition. We have conducted extensive experiments on the BU-4DFE dataset. The
obtained results of the proposed approach provide promising results.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years automatic face analysis has attracted increasing
interest in the field of computer vision and pattern recognition
due to its inherent challenges and its potential in a wide spectrum
of applications, including security surveillance [1,2] and diagnostic
of facial pathology [3]. Despite the great progress, 2D face analysis
approaches that depend on color or gray-scale image analysis, still
suffer from illumination and pose variations, which often occur in
real-world conditions. With the rapid innovation of 3D cameras,
the 3D shape is regarded as a promising alternative to achieve
robust face analysis [4,5]. Very recently, the advent of 4D imaging
systems capable of acquiring temporal sequences of 3D scans (i.e.,
4D is regarded as 3D over the time) made possible comprehensive
face analysis by introducing the temporal dimension, where the
temporal behavior of 3D faces is captured by adjacent frames [6,7].
Note that such temporal information is crucial for analyzing the
facial deformations. Despite the large amount of work on static
and dynamic 3D facial scans analysis, temporal modeling is still
almost unexplored for identity recognition. Moving from shape
analysis of static 3D faces to dynamic faces (4D faces) gives rise to
new challenges related to the nature of the data and the proces-
sing time – which static and dynamic shape representations are
most suited to 4D face analysis? How the temporal dimension can
contribute to face analysis? Is it possible to compute statistical
summaries on dynamic 3D faces? From a perspective of face

classification, which relevant features and classification algorithms
can be used?

In this paper, we aim to answer the above questions by pro-
posing a comprehensive framework for modeling and analyzing
3D facial sequences (4D faces), with an experimental illustration in
face recognition from 4D sequences.

Recently, works addressing face analysis from temporal
sequences of 3D scans start to appear in the literature, encouraged
by the advancement in 3D sensors’ technology, with some of them
restricted to RGB-D Kinect-like sensors. In [8], Berretti et al.
investigated the impact of 3D facial scans’ resolution on the
recognition rate by building super resolution 3D models from
consumer depth camera frames. Experimental studies using the
new 3D super resolution method validate the increase of recog-
nition performance with the reconstructed higher resolution
models. Hsu et al. [9] showed that incorporating depth images of
the subjects in the gallery can improve the recognition rate,
especially in the case of pose variations, even though there are
only 2D still images in the testing. In the last few years, some
works addressed face recognition from dynamic sequences of 3D
face scans as well like in [6], where Sun et al. proposed a 4D-HMM
based approach. In this work, a 3D dynamic spatio-temporal face
recognition framework is derived by computing a local descriptor
based on the curvature values at vertices of 3D faces. Spatial and
temporal HMM are used for the recognition process, using 22
landmarks manually annotated and tracked over time. As an
important achievement of this work, it is also evidenced that 3D
face dynamics provides better results than 2D videos and 3D
static scans.
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Subspace representation for dynamic facial information either
for image sets or for image sequences (videos) showed a great
success. Shigenaka et al. [10] proposed a Grassmann distance
mutual subspace method (GD-MSM) and Grassmann Kernel Sup-
port Vector Machine (GK-SVM) comparison study for the face
recognition problem from a mobile 2D video database. In [11], Lui
et al. proposed a geodesic distance based algorithm for face
recognition from 2D image sets. Turaga et al. [12] presented a
statistical method for video based face recognition. These methods
use subspace-based models and tools from Riemannian geometry
of the Grassmann manifold. Intrinsic and extrinsic statistics are
derived for maximum-likelihood classification applications. More
recently, Huang et al. [13] proposed learning projection distance
on Grassmann manifold for face recognition from image sets. In
this work, an improved recognition is obtained by representing
every image set using a Gaussian distribution over the manifold.

Sparse representation and dictionary learning attracted a lot of
attention recently, due to their success in many computer vision
problems. In [14], a sparse coding framework was presented for
face recognition from still images. In this work, Wright et al.
showed that using sparse coding the role of feature extraction on
the performance is not so important, and the sparse coding is
more tolerant with face occlusion. Yang et al. [15] proposed a
robust sparse coding (RSC) approach for face recognition. In this
work, the sparse coding problem is solved as a constrained robust
regression, which makes the recognition more robust against
occlusion, change of lighting and expression variation in still
images. Elhamifar et al. [16] presented the Sparse Subspace Clus-
tering (SSC) algorithm that classifies linear subspaces after finding
their sparse coding. A generalization of sparse coding and dic-
tionary learning was proposed by Xie et al. [17], which permits its
application on subspace data representations that do not have a
linear structure, like the Riemannian manifold. Mapping points
from a non-linear manifold to tangent spaces shows good classi-
fication results on texture and medical images’ classification.

In [18], Harandi et al. proposed an extrinsic solution to combine
sparse coding and dictionary learning with nonlinear subspaces,
like the Grassmann manifold. Embedding the Grassmann manifold
into the symmetric matrices’ sub-manifold makes the sparse
coding on the induced manifold possible, faster, and more coher-
ent than intrinsic embedding on one or more tangent spaces.
Application to 2D video face datasets shows the efficiency of this
approach against other learning solutions.

2. Methodology and contributions

In this paper, we investigate the contribution of 3D face
dynamics in face recognition. To this end, after a preprocessing
step, we compute surface curvature from each 3D static mesh of a
sequence, and project it to a 2D map (call edcurvature map). A
sequence of curvature maps is then cast to a matrix form by re
shaping the 2D maps to column vectors, Singular Value Decom-
position (SVD) is used to reduce the subspace spanned by the
matrix to that of the first k-singular-vectors, which in turn is
regarded as a point on a Grassmann manifold. Recognition using
extrinsic methods based on sparse coding and dictionary learning
on the manifold achieved the best performance. An overview of
the proposed approach is shown in Fig. 1.

In summary, the main contributions of this paper are:

� A fully automatic and computationally cheap face recognition
approach using 4D data. To the best of our knowledge, this is the
first study in the literature, which brings the subspace modeling
methodology with advanced geometric and learning tools to 3D
face sequences.

� An in-depth investigation of the contribution of the 3D shape
dynamics to face recognition.

� An extensive experimental analysis, involving the BU-4DFE
dataset and three classification schemes based on intrinsic
and extrinsic methods on the manifold.

The rest of the paper is organized as follows: in Section 3, the
methodology of modeling 4D faces on Grassmann manifold as well
as essential elements on the geometry of these manifolds is pre-
sented; Section 4 discusses sparse representation and dictionary
learning on the Grassmann manifold; our 3D dynamic face
recognition framework is presented in Section 5; Experimental
results and their discussion are given in Section 6; finally, our
conclusions and future work are drawn in Section 7.

3. Modeling sequences of 3D faces on Grassmann manifold

The idea of modeling multiple-instances of visual data, like set
of images or video sequences, as linear subspaces for classification
and recognition tasks has revealed its efficiency in many computer
vision problems [12,19,20]. This compact low-dimensional data
representation has the main advantage in its robustness against
noise or missing parts in the original data. Besides, the availability
of computational tools from differential geometry makes working
on non-linear data (e.g., the space of k-dimensional subspaces)
possible, and allows managing the non-Euclidean nature of these
spaces. Accordingly, in this work, we adopt the subspace repre-
sentation solution for analyzing 4D facial sequences. To our
knowledge, this is one of the first investigations on modeling the
temporal evolution of 3D facial shapes with application to face
recognition. Studying the effects of these two aspects together is
still an open problem in computer vision applications.

In the remaining of this section, we will describe the static 3D
shape representation using mean curvature computed on 3D facial
surfaces as well as the associated subspace representation to
capture their temporal dynamics (Section 3.1). In addition,
since the subspace learning approach that we propose lies
on the Grassmann manifold, we will also recall essential back-
ground on its geometry, and related definitions including metrics
and distances (Section 3.2) and sample mean computation (Sec-
tion 3.3).

3.1. Static and dynamic 3D shape representation

In the proposed solution, we consider 3D scans of the face
acquired continuously via a dynamic 3D scanner (3D plus time,
also called 4D), thus producing a temporal 3D sequence with the
dynamic evolution of the 3D face. Using these data, the proposed
approach is designed to exploit the spatio-temporal information.
To achieve this goal, a subspace modeling technique is applied as
follows: (i) the 3D scans are preprocessed by cropping the facial
region from the rest of the scan, then pose normalization,
denoising via smoothing, and holes filling are performed; (ii) the
mean curvature on 3D surfaces is computed, so that a flow of
curvature-maps is produced by projection; (iii) the k-SVD ortho-
gonalization procedure is applied to subsequences of the curva-
ture-maps, so as to obtain an orthonormal basis spanning an
optimized subspace. This subspace represents an element on the
Grassmannian manifold GkðRnÞ, being n the dimension of
curvature maps.

The shape information of every 3D scan is captured first by
computing, as 3D local descriptor, the mean curvature
H¼ ðk1þk2Þ=2, where k1 and k2 are the two principle curvatures.
The mean curvature values are computed at every vertex, then
they are visualized and saved as a 2D map using a blue-red color
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