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a b s t r a c t

Feature weighting is of considerable importance in machine learning due to its effectiveness to highlight
relevant components and suppress irrelevant ones. In this paper, we focus on the feature weighting
problem in a specific machine learning area: multiple-instance learning, and propose maximum margin
multiple-instance feature weighting (M3IFW) to seek large classification margins in the weighted feature
space. The designed M3IFW algorithm can be applied to both standard binary-class multiple-instance
learning and the corresponding multi-class learning, and we abbreviate them to B-M3IFW (binary-class
M3IFW) and M-M3IFW (multi-class M3IFW), respectively. Both B-M3IFW and M-M3IFW contain three
kinds of unknown variables, i.e., positive prototypes, classification margins, and weighting coefficients.
We utilize the coordinate ascent algorithm to update the three kinds of unknown variables, respectively
and iteratively, and then perform classifications in the weighted feature space. Experiments conducted
on synthetic and real-world datasets empirically demonstrate the effectiveness of M3IFW in improving
classification accuracies.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The main difference between multiple-instance learning and
traditional supervised learning is that in supervised learning, class
labels are attached to instances and the goal is to predict the class
labels of unseen instances, whereas in multiple-instance learning,
class labels are attached to bags (a set of instances is termed as a
bag) and the goal is to predict the class labels of unseen bags. In
standard multiple-instance learning, there are two classes in total,
i.e., the positive class and the negative class. Note that the
terminologies of “positive” and “negative” both define the class
labels of given objects from two levels, i.e., the instance level and
the bag level. In the instance level, given an instance, if it belongs
to the positive class, we term it as a positive instance; otherwise
we term it as a negative instance. In the bag level, given a bag, if it
contains at least one positive instance, we term it as a positive bag;
otherwise it is termed as a negative bag, which means all instances
in a negative bag are negative ones. Based on the above definition,
it is noted that the class label of a given negative bag and the class
labels of instances in this negative bag are consistent, because all
instances in a negative bag are negative ones. However, the class
label of a given positive bag and that of instances in this positive
bag are usually inconsistent, because a positive bag may contain
both positive and negative instances simultaneously. Hence, there

are class-label ambiguities for instances in positive bags, because
their class labels are unclear, i.e., they may be either positive or
negative.

The terminology “multiple-instance learning” was originally
proposed by Dietterich et al. [1] when they were investigating the
drug activity prediction problem. In their seminal work, Dietterich
et al. considered the problem of predicting whether a candidate
drug molecule binds to the target protein or not. Actually,
a molecule may take on many different shapes by rotating its
internal bonds, and if any of these shapes conforms closely to the
structure of the binding site, the candidate molecule binds to the
target protein. As a result, if we treat each shape of a molecule as
an instance and each molecule which may take on many different
shapes as a bag, we can easily see that drug activity prediction is a
typical multiple-instance learning problem. Besides drug activity
prediction, multiple-instance learning appears in many other
areas, such as image categorization [2,3], image retrieval [4,5],
protein sequence classification [5], stock selection [6], text classi-
fication [6,7], computer aided diagnosis [8,9], security application
[10].

Standard multiple-instance learning consists of only two
classes, i.e., the positive class and the negative class. However,
with the quick development of multiple-instance learning, its
application area has been extended from the binary-class case to
the multi-class case [3,11]. In multi-class multiple-instance learn-
ing, for each given class, if any instance in a bag represents the
class label of this class (i.e., the instance is positive for the given
class), the bag is positive for this class, otherwise the bag is
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negative for this class. Note that in multi-class multiple-instance
learning, usually we do not define the specific negative bags for a
given class, because positive bags for some class can be treated as
negative bags for other classes, e.g., positive bags for class c are
simultaneously negative bags for classes except for c. Moreover,
note that the multi-class multiple-instance learning problem is
different from the multiple-instance multiple-label learning one
[12], although there are multiple (larger than two) classes for both
problems and they are kind of similar from this point of view. For
multi-class multiple-instance learning, each bag is attached to
only one class label, whereas for multiple-instance multiple-label
learning, each bag may have more than one class labels. In this
paper, we focus our study on binary-class and multi-class multi-
ple-instance learning. Multiple-instance multiple-label learning is
out of the scope of the current paper.

The greatly increasing applications make multiple-instance
learning more and more popular in the machine learning
community, and hence, many representative multiple-instance
learning algorithms, e.g., ID-APR [1], Diverse Density (DD) [2]
and EM-DD [13], Bayesian-KNN and Citation-KNN [14], MI-SVM
and mi-SVM [6], MI-Kernel [15], MIGraph and miGraph [11],
MIForests [16], MIRVM [17], MIDR [18], and the classifier combin-
ing algorithm γ-Rule [19], have been proposed to cope with
various multiple-instance learning tasks.

Feature weighting, which assigns different coefficients to
different features with each coefficient indicating the relative
importance of the corresponding feature to the given learning
task (e.g., classifications), has been studied by machine learning
researchers and by which we may expect to obtain some kind of
performance improvements. Several representative feature
weighting algorithms, such as RELIEF [20], I-RELIEF [21,22], LESS
[23], and LMFW [24], have obtained very promising learning
performances in various applications.

Feature weighting has very close relationship with another two
kinds of data preprocessing transformations: feature extraction
[25] and feature selection [26,27], because all the three transfor-
mations try to mine the intrinsic information related to the given
learning task and aim to improve the learning performances via
this information. However, the ways of realizing the above three
transformations are different. In feature weighting, we first endow
each feature with a nonnegative coefficient to denote the relative
importance of this feature to the learning task, and then utilize the
weighted data to replace the original data in the following
learning task. Feature selection can be treated as a special case
of feature weighting, i.e., in feature selection the endowed coeffi-
cients cannot be arbitrary nonnegative values but have to be
binary ones (0 or 1). In feature extraction, we first transform data
to a linear or nonlinear feature space, and then utilize the data in
the transformed space to operate the following learning task.
Compared with feature weighting and feature selection, feature
extraction has more degrees of freedom, because the transformed
space of feature extraction may be a totally different space from
the original one (e.g., it may be either a linear lower-dimensional
subspace or a nonlinear kernel space, and for both cases features
in the transformed space and features in the original space are
totally different), whereas the transformed space of either feature
weighting or feature selection is still the same to the original one,
since features in the weighted or selected space still correspond to
the original features.

Similar as many other machine learning areas (e.g., supervised
learning, unsupervised learning, and semi-supervised learning), the
feature weighting problem exists in multiple-instance learning as
well. In particular, different features usually contribute differently in
separating positive and negative bags. On the one hand, some
features may contain intrinsic discriminative information and can
help to improve the discrimination of heterogeneous bags, and

hence, they are relevant to classifications and can be termed as
relevant features; on the other hand, some features may only contain
redundant and noisy information which are useless or even harmful
to the discrimination, and hence, they are irrelevant to classifications
and usually termed as irrelevant features. If we can effectively find
out which features are relevant and which features are irrelevant,
and then perform feature weighting by simultaneously highlighting
the relevant ones and suppressing the irrelevant ones, we may
expect to obtain improved classification accuracies.

In this paper, we focus our research on multiple-instance
feature weighting, i.e., designing feature weighting algorithms
that are suitable to multiple-instance learning tasks. In particular,
we adopt the popular maximum margin principle to design our
feature weighting algorithm, and thus term it as maximum margin
multiple-instance feature weighting (M3IFW). We utilize the
coordinate ascent algorithm to update all three kinds of unknown
variables in M3IFW (i.e., positive prototypes, classification mar-
gins, and weighting coefficients), respectively and iteratively, and
then perform feature weighting by transforming data from the
original space to the weighted space, and finally utilize the
weighted data to operate classifications.

Note that the designed M3IFW algorithm contains two different
versions, of which one is applicable for the standard binary-class
multiple-instance learning, while the other one is applicable for
multi-class applications. To make a distinction, we refer to them as
binary-class M3IFW and multi-class M3IFW, respectively. For
convenience, we abbreviate binary-class M3IFW to B-M3IFW,
and abbreviate multi-class M3IFW to M-M3IFW.

The rest of this paper is organized as follows. In Section 2, we
introduce some related work and discuss their relationships and
inspirations to our work. In Section 3, we introduce the design
work of B-M3IFW. In Section 4, we discuss the optimization
process of B-M3IFW in detail. In Section 5, we introduce how to
extend B-M3IFW to M-M3IFW, and then give a brief discussion of
the optimization of M-M3IFW, which is very similar to that of B-
M3IFW. The optimality of B-M3IFW and M-M3IFW is discussed in
Section 6. In Section 7, first we conduct experiments on two
synthetic datasets to operate performance evaluations on
B-M3IFW, and then compare B-M3IFW and M-M3IFW with their
competing algorithms on benchmark datasets and the Corel
Dataset, respectively. Finally, we give concluding remarks and
discuss the future work in Section 8.

2. Related work

In this section, we give an introduction of some related work
and discuss their relationships to our work, with the expectation
of revealing the inspiration of related work to our work and giving
further understandings on both our and related work. Note that in
following discussions (both this section and the following ones),
sometimes we do not distinguish B-M3IFW from M-M3IFW and
just term them as M3IFW for convenience, unless it is prone to
cause misunderstandings and we have to make clear distinctions.

2.1. Single-instance learning algorithms

In this subsection we give a brief discussion of several repre-
sentative single-instance learning algorithms: LDA [28], MMC [29],
I-RELIEF [21,22], and SVM-RFE [30], of which LDA and MMC are for
feature extraction, I-RELIEF is for feature weighting, and SVM- RFE
is for feature selection.

2.1.1. LDA and MMC
LDA and MMC are two supervised feature extraction algorithms

which project data onto some lower-dimensional subspaces and
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