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a b s t r a c t

In this article, various notions of edges encountered in digital image processing are reviewed in terms of
compact representation (or completion). We show that critical exponents defined in Statistical Physics
lead to a much more coherent definition of edges, consistent across the scales in acquisitions of natural
phenomena, such as high resolution natural images or turbulent acquisitions. Edges belong to the
multiscale hierarchy of an underlying dynamics, they are understood from a statistical perspective well
adapted to fit the case of natural images. Numerical computation methods for the evaluation of critical
exponents in the non-ergodic case are recalled, which apply for the vast majority of natural images. We
study the framework of reconstructible systems in a microcanonical formulation, show how it redefines
edge completion, and how it can be used to evaluate and assess quantitatively the adequation of edges as
candidates for compact representations. We study with particular attention the case of turbulent data, in
which edges in the classical sense are particularly challenged. Tests are conducted and evaluated on a
standard database for natural images. We test the newly introduced compact representation as an ideal
candidate for evaluating turbulent cascading properties of complex images, and we show better
reconstruction performance than the classical tested methods.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

As algorithms dedicated to the computation of edges in digital
images emerged [1–8], Torre and Poggio [9], while observing that
most methods rely on the ill-posed problem of differentiating
digital images, proposed a general qualitative description of edges:
they noted that edges are naturally associated to the concepts of
compact representation (they call it completion), i.e., edges encode
most information of an image [36]. Similarly, other authors note
that edges represent an image0s independent feature [12]. In [9]
the authors focus on edge detection as the process of computing
derivatives, and, while attempting to do so in a well-posed form,
they are led naturally to the problem of prefiltering the image by a
(e.g., Gaussian) kernel, which transforms the input signal into a
differentiable mapping in the continuous domain, hence allowing
the characterization of edges by differential operators. An instance
of this formalism is the zero-crossing of second-order derivatives,
as in [5–7,31,33,35], to cite a few, including a recent nonlinear
derivative approach (called NLFS) [32]. This formal setting allowed
the development of edge characteristics in the framework of
differential geometry, a perspective that has become pervasive in

image processing [10,23]. The multiscale nature of edges was
recognized very early and it was noted that tracing edge properties
across scales would gain insight into the physical process behind
image formation. Neurophysics was demonstrating that, in the
optical pathway, spatial filters of different sizes operate at the
same location [11]. This is related to the processing of information
in the early visual system [15], where cells tend to take advantage
of the statistical regularities of the input signal in order to get
compact representations out of redundancy [16,17].

The convolution of the input image signal by a Gaussian kernel
introduces a scale parameter (the standard deviation of the
Gaussian kernel) corresponding to a simple linear scale-space
associated to the heat equation. This is often used as an argument
for advocating multiscale properties of Gaussian prefiltering
[9,22,25]. In general, however, the multiscale properties of com-
plex systems do not comply with such an extreme simplification
[18]. The advent of scale-space theory in Computer Vision allowed
more complex multiscale representations corresponding, among
others, to anisotropic diffusion schemes [19,24,34], which can
incorporate probabilistic models of both sensor noise and oper-
ators0 responses (to better estimate the gradient0s magnitude
threshold in case of noise). However, the simple example of an
image corresponding to the acquisition of a turbulent fluid, like,
for instance, a remotely sensed acquisition over the oceans,
contains coherent structures associated to the cascading proper-
ties of intensive variables in Fully Developed Turbulence (FDT)
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[29]. It has an associated multiscale hierarchy consisting of sets
having a multifractal nature [21] and, as such, cannot be contem-
plated within a differentiable scale-space framework. Incidentally
note that in [30] authors write that an appropriate spatial scale
depends upon the local structure of the edge, and thus varies
unpredictably over the image.

In a seminal paper, Mallat and Zhong [26] relate multiscale
Canny edge detection to the local maxima of a wavelet transform
and study the completion of multiscale edges associated to the
maxima of wavelet coefficients (multiscale edge detection
[26,37]); for that purpose they introduce a reconstruction algo-
rithm of a signal from its edges. The quality of the reconstruction is
quantitatively evaluated by the SNR of the original and recon-
structed signals, hence providing an accurate evaluation of the
quality of edge pixels determined by their method; this evaluation
is different from the previous criteria used in computing edge
detection performance [10]. Local maxima of wavelet coefficients
are also used by other authors to form the basis of the Wavelet
Transform Modulus Maxima (WTMM) methodology [27]. Edges
can also be understood as alignment of Fourier or wavelet phases
across scales [13,14].

In this paper, we show that recent developments around the
notion of transition in nonlinear physics, along with enhanced
computational methods of its quantitative parameters (most
notably singularity exponents) [29], lead to a notion of edge that
provides better results over all the previous declined versions
encountered in image processing w.r.t. edge completion. Our
results strongly advocate for a definition of edge based on non-
linear operators while we prove along the way, and incidentally,
that previous nonlinear approach [32] also works better than the
classical ones w.r.t. to reconstruction of an image from its edge
data. This can be done by referring to the early-addressed
pertinent notion of compact representation (completion). When
neurophysics and the study of biological vision in mammals state
that edges encode most information in an image signal, this must
have the consequence of being able to reconstruct accurately an
image from the compact representation of its edge pixels ([37], p.
194). Statistically, image acquisitions correspond to processes out
of the equilibrium state, so that, from a theoretical point of view,
transitions associated to scale-space formulations reviewed above
cannot be correct. We show that the new notion of edge outper-
forms the most well-known previous ones and that it is naturally
robust to noise. We give specific attention to the case of turbulent
images, whose edges are not well defined in the classical context
of edge detection, and we show that in this context the new
notions introduced in this article work much better than the
previous ones.

Unpredictability of edges, the concept of singularity exponents
and the framework of reconstructible systems are introduced
in Section 2. Edge consistency across the scales is addressed in
Section 3. Quantitative results are shown and discussed in Sections
4 and 5, respectively, where in Section 4.4 the case of turbulent
images is specifically addressed. In Section 6 conclusion follows.

2. Edges, unpredictability and reconstructability revisited
using the microcanonical multiscale formalism (MMF)

In this section we show how the microcanonical multiscale
formalism (MMF [47]) can be applied to edge detection and image
reconstruction. We will show that ideas borrowed from Statistical
Physics about criticality and exponents, when evaluated in a
microcanonical formulation, are associated to a computable notion
of transition, intimately related to predictability in complex systems
[38]. This in turn gives rise to a notion of edge whose quantitative

performance evaluation can be tested through the framework of
reconstructible systems.

2.1. Local predictability exponents

Classically, edges are related to sharp variations of the image
gradient. The main idea worked out in this article is to delve
deeper into developing the notion of “sharp variation”, and relate
it to the more general notion of “transition” defined in Statistical
Physics for intensive physical variables. For that matter, a scalar
image I defined over a compact subset of R2 is identified with an
intensive physical variable (such an identification corresponds
exactly to the physics of the acquisition for images of natural
phenomena such as in infrared remote sensing imagery). In non-
linear physics, the relation between the transitions of an intensive
variable and criticality is well known, explained, and quantita-
tively formalized through the notion of critical exponent [39]. We
recall that definition here. We say that image I has a critical
exponent hð x!Þ at point x!, if for at least one multiscale functional
Tr ,1 dependent on scale r, the following equation holds:

TrIð x!Þ¼ αð x!Þrhð x
!Þþoðrhð x

!ÞÞ ð r!-0Þ ð1Þ

where the term oðrhð x
!ÞÞ is a quantity that decreases to zero faster

than rhð x
!Þ when r goes to 0 and αð x!Þ is a signal-dependent

amplitude prefactor. An effective choice for the functional Tr leads
to a measure given by the total variation of the image gradient
[47], and is defined as follows:

μðBrð x!ÞÞ ¼
Z
Br ð x
!Þ

J∇IJ ð x!Þ dð x!Þ ð2Þ

where Brð x!Þ is a ball of radius r centred at point ð x!Þ of the signal
domain. The wavelet transform of the measure μ then allows us to
infer a more computable version of the singularity exponents (less
prone to noise variation) [48], such that

T Ψμð x!Þ¼ αΨ ð x!Þrhð x
!Þþoðrhð x

!ÞÞðr-0Þ ð3Þ
where Ψ is an associated wavelet.

The central problem is to compute at high numerical precision
the value of hð x!Þ at point x!: bad approximations of singularity
exponents lead to poor reconstructions. We will address the
problem of robust computation of singularity exponents in
Section 2.2. For the moment we note that Eq. (1) is a pointwise
and localized version of the definition used in introducing singu-
larity spectrum [27,46]: we do not make use of statistical averages
and grand ensembles, but seek to evaluate hð x!Þ at point x! (which
means that we cannot rely on stationarity hypothesis). We denote
F h the component in the image0s domain associated to singularity
exponent value h as follows:

F h ¼ f x! : hð x!Þ¼ hg ð4Þ
This family of sets is naturally associated to the multiscale
hierarchy in an image [47]. In the case of natural images of the
physical world, it is expected that the values of hð x!Þ are bounded
by below, so that the Most Singular Manifold or MSM can be
defined as:

F1 ¼ f x! : hð x!Þ¼ h1 ¼Minðhð x!ÞÞg ð5Þ
noting that, in digital signals, the value h1 is thresholded and
must correspond to a (small) tolerance interval. The MSM com-
prises the set of points in an image with the sharpest transitions,

1 Typical examples of Tr can be wavelet transforms at scale r or some
differential operators applied to the signal.
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