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a b s t r a c t

Embedding feature selection in nonlinear support vector machines (SVMs) leads to a challenging non-
convex minimization problem, which can be prone to suboptimal solutions. This paper develops an
effective algorithm to directly solve the embedded feature selection primal problem. We use a trust-
region method, which is better suited for non-convex optimization compared to line-search methods,
and guarantees convergence to a minimizer. We devise an alternating optimization approach to tackle
the problem efficiently, breaking it down into a convex subproblem, corresponding to standard SVM
optimization, and a non-convex subproblem for feature selection. Importantly, we show that a
straightforward alternating optimization approach can be susceptible to saddle point solutions. We
propose a novel technique, which shares an explicit margin variable to overcome saddle point
convergence and improve solution quality. Experiment results show our method outperforms the
state-of-the-art embedded SVM feature selection method, as well as other leading filter and wrapper
approaches.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Feature selection has become a significant research focus in
statistical machine learning and data mining communities. As
increasingly more data is available, problems with hundreds and
thousands of features have become common. Some examples
include text processing of internet documents, gene micro-array
analysis, combinatorial chemistry, economic forecasting and con-
text based collaborative filtering. However, irrelevant and redun-
dant features reduce the effectiveness of data mining and may
detract from the quality and accuracy of the resulting model. The
goal of feature selection is to identify the most relevant subset of
input features for the learning task, improving generalization error
and model interpretability.

In this paper, we focus on feature selection for nonlinear
support vector machine (SVM) classification. SVM is based on
the principle of maximum-margin separation, which achieves the
goal of structural risk minimization by minimizing a general-
ization bound on model complexity and training error concur-
rently [1,2]. The model is obtained by solving a convex quadratic
programming problem. Linear SVM models can be extended to the
nonlinear ones by transforming the input features using a set of

nonlinear basis functions. An important advantage of the SVM is
that the transformation can be done implicitly using the “kernel
trick”, thereby allowing even infinite-dimensional feature expan-
sions [3]. Empirically, SVMs have performed extremely well in
diverse domains [e.g. see [4,5]].

Determining the optimal set of input features is in general NP-
hard, requiring an exhaustive search of all possible subsets.
Practical alternatives can be grouped into filter, wrapper, and
embedded techniques [6]. In addition, there are a class of Bayesian
approaches which tackle the problem by incorporating sparsity
inducing priors [7–11].

Filter methods operate independent of the SVM classifier to score
features according to how useful they are in predicting the output.
Relief [12,13] is a popular multivariate nonlinear filter that has
successfully been used as a preprocessing step for SVMs [14].
Wrapper methods, on the other hand, use the SVM classifier to
guide the search in the space of all possible subsets. For instance the
most common wrapper, recursive feature elimination, greedily
removes the worst (or adds the best) feature according to the loss
(or gain) of the SVM classifier at each iteration [15]. Finally, embed-
ded approaches incorporate the feature selection criterion in the
SVM objective itself. Embedded methods can offer significant advan-
tages over filters and wrappers, since they tightly couple feature
selection with SVM learning, simultaneously searching over the
feature and model space.

For linear SVMs, several embedded feature selection methods
have been proposed. The general idea is to incorporate sparse
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regularization of the primal weight vector [16–21]. However, similar
techniques cannot be readily applied to nonlinear SVM classifiers,
since the weight vector is not explicitly formed. Sparse regulariza-
tion of the dual variables (support vectors) lead to a reduction in the
number of kernel functions needed to generate the nonlinear
surface, but does not result in a reduction of input features [19].
Recently, supervised sparse dimension reduction techniques have
also been applied under nonlinear manifolds with success [22].

Embedding feature selection in a nonlinear SVM requires
optimizing over additional parameters in the kernel function. This
can be viewed as an instance of Generalized Multiple Kernel
Learning (GMKL) [23], which offers the state-of-the-art solution
for embedded nonlinear feature selection. In general, the resulting
problem is non-convex. The algorithm proposed by Varma and
Babu [23] to solve GMKL is based on gradient descent, i.e. line-
search along the negative gradient. Hence, it uses a first-order
convex approximation at each iterate, which can fail to find a
minimizer when the problem is non-convex. In contrast, trust-
region algorithms are better suited for non-convex optimization.
At each iterate they solve non-convex second-order approxima-
tions with guaranteed convergence to a minimizer.

This paper develops an effective algorithm to solve the non-
convex optimization problem that results from embedding feature
selection in nonlinear SVMs. Our contributions in this paper are as
follows:

1. We invoke the Representor Theorem to formulate a primal
embedded feature selection SVM problem and use a smoothed
hinge loss function to obtain a simpler bound constrained problem.
We solve the resulting non-convex problem using a generalized
trust-region algorithm for bound constrained minimization.

2. To improve efficiency we propose a two-block alternating
optimization scheme, in which we iteratively solve (a) the
standard SVM problem and (b) a smaller non-convex feature
selection problem. Importantly, we propose a novel alternate
optimization method by sharing a single perspective variable.
We establish mathematical conditions under which this per-
spective variable sharing the AO method avoids saddle points.
For SVM feature selection, the perspective variable explicitly
represents the margin. We provide computational evidence to
illustrate that this helps avoid suboptimal local solutions.
Moreover, by focusing on maximizing margin in the feature
selection problem—a critical quantity for generalization error—
we are able to further improve solution quality.

3. We compare our methods to GMKL and other leading nonlinear
feature selectors, and show that our approach improves results.

The rest of the paper is organized as follows. Section 2
formulates the embedded feature selection problem. Section 3
describes the bound constrained trust-region approach to solve
the problem in the full feature and model space. Section 4
develops the explicit margin alternating optimization approach.
Section 5 compares our approach with other nonlinear feature
selection methods on several datasets and we conclude with a
discussion in Section 6.

2. Feature selection in nonlinear SVMs

We start by describing the embedded feature selection problem
for nonlinear SVMs. We motivate and explain the formulation with
respect to margin-based generalization bounds.

Consider a set of n training points, xiARd, and corresponding
class labels, yiAfþ1; �1g, i¼ 1;…;n. Each component of xi is an
input feature. In classical SVM, proposed by [1], a linear classifier
(w; b) is learned by maximizing the geometric margin, defined as

γ ¼miniyiðwTxiþbÞ=JwJ , where J � J denotes 2-norm. Since the
decision hyperplane associated with (w; b) does not change upon
rescaling to (λw; λb), for λARþ , the function output at the margin
(functional margin) is fixed to 1; geometric margin is given by
γ ¼ 1=JwJ , and the norm of the weight vector is minimized. Thus
in the standard setting, SVM results in the following convex
quadratic programming problem:

min
w;b;ξ

1
2
JwJ2þC ∑

n

i ¼ 1
ξi;

s:t: yiðwTxiþbÞZ1�ξi; i¼ 1;…;n;

ξiZ0; i¼ 1;…;n: ð1Þ
Here, ξi0s are the margin violations, and C is a penalty controlling
the trade-off between empirical error and (implicitly computed)
geometric margin.

To obtain a non-linear decision function, the kernel trick [3] is
used by defining a kernel function, Kðx; x0Þ �ϕðxÞTϕðx0Þ, where
K : Rd � Rd-R and ϕ : Rd-F is a non-linear map from input
features to a (potentially infinite dimensional) derived feature space.
A kernel function, satisfying Mercer0s condition [24,25], directly
computes the inner product of two vectors in a derived feature
space, without the need to explicitly determine the feature mapping.
Conventionally, the kernel is used in the dual of problem 1, where all
occurrences of data appear inside an inner product. However, we can
also formulate the primal problem in the derived feature space by
expressing the weight vector as a linear combination of mapped data
points, w¼∑n

i ¼ 1yiuiϕðxiÞ, due to Representor Theorem [26]. We
denote the coefficients as ui, and not αi as used in the standard SVM
literature, in order to distinguish them from the typical Lagrange
multiplier interpretation. Substituting this form in (1) leads to the
following primal non-linear SVM problem:

min
u;b;ξ

1
2

∑
n

i;j ¼ 1
yiyjuiujKðxi; xjÞþC ∑

n

i ¼ 1
ξi;

s:t: yi ∑
n

j ¼ 1
yjujKðxi; xjÞþb

 !
Z1�ξi; i¼ 1;…;n;

ξiZ0; i¼ 1;…;n: ð2Þ
The geometric margin in the derived feature space is given by

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i;j ¼ 1yiyjuiujKðxi; xjÞ
q :

The dual of problem (2) reveals that the primal variable ui is
equivalent to the standard SVM dual Lagrange multiplier αi, i.e.
ui ¼ αi, when the kernel matrix is non-singular. If the kernel
matrix is singular, then the coefficient expansion ui is not unique
(even though the decision function is) and solving (2) will produce
one of the possible expansions, of which αi is also a minimizer.

The maximum margin classifier is motivated by theoretical
bounds on the generalization error. Specifically, Ref. [2] shows that
generalization error for n points is bounded by

errr c
n

R2

γ2
þ JξJ2

 !
log 2 nþ log

1
δ

" #
; ð3Þ

for some constant c with probability 1�δ, where γ is the
geometric margin of the classifier. The key expression, on which
generalization depends, is R2=γ2þ JξJ2, where ξ is the margin
slack vector (normalized by γ), and R is the radius of the ball that
encloses the set of points in the derived feature space, fϕðxiÞgni ¼ 1.
For a fixed dataset and kernel choice, R is constant, and thus
maximizing the margin while reducing margin violations mini-
mizes the upper bound in (3). Although the generalization bound
suggests using a 2-norm penalty on margin violations, a 1-norm
penalty is preferred for classification tasks, since it is a better
approximation to a step penalty [2].
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