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a b s t r a c t

We describe how oriented Basic Image Feature Columns (oBIF Columns) can be used for writer
identification and how this texture-based scheme can be enhanced by encoding a writer's style as the
deviation from the mean encoding for a population of writers. We hypothesise that this deviation,
the Delta encoding, provides a more informative encoding than the texture-based encoding alone. The
methods have been evaluated using the IAM dataset and by making entries to two top international
competitions for assessing the state-of-the-art in writer identification. We demonstrate that the oBIF
Column scheme on its own is sufficient to gain a performance level of 99% when tested using 300 writers
from the IAM dataset. However, on the more challenging competition datasets, significantly improved
performance was obtained using the Delta encoding scheme, which achieved first place in both
competitions. In our characterisation of the Delta encoding, we demonstrate that the method is making
use of information contained in the correlation between the written style of different textual elements,
which may not be used by other methods.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Writer identification is the problem of determining authorship
of written script based upon its characteristic style rather than its
lexical content. The most common example is handwritten text,
where the writing technique and anatomy of an individual give
rise to a particular style of writing, but the problem can also
include other written forms such as music scores [1–3].

The problem is well established in forensic science, where
human experts have made comparisons to establish the identity of
the author of documents in legal cases (see [4] for a review.) The
problem has been approached using computer vision methods
since the 1970s [5] and interest remains strong, as demonstrated
by multiple competitions associated with major conferences
[6,7,3]. The primary application remains the automation of writer
identification for forensic science, but the techniques can also be
applied to historical document analysis [8–11] and profiling
[12,13].

Analysis of handwriting by human experts has typically relied
upon the identification of distinguishing elements of an indivi-
dual's writing, which can then be used to compare a new
document against examples of known authorship [4]. Several
automated methods have attempted to copy this process, by

extracting elements of the text and then comparing them with
the same elements found in labelled examples of writing [14,15].
These methods have the advantage of being able to make direct
comparisons between the most informative elements of the text
across different passages. However, they ignore correlations, if
they exist, between the style of different text elements.

Other methods, drawing on advances in texture recognition in
computer vision, have treated images of handwriting as textures,
without the need to recognise individual words or characters
within the text. As these methods encode the whole text, any
correlation between the style of different elements of text will be
encoded. On the other hand, as such methods take no account of
the words in the text, comparisons of passages of text may be
impaired if the distribution of characters or words differs sig-
nificantly between the two passages.

In this work we present a method for writer identification that
makes use of a texture-based encoding and takes account of
constituent words in the text. In doing this we attempt to create
a style vector, referred to as the Δ encoding, for each writer that is
independent of the passage of text. This is done by calculating an
estimate of the mean encoding across a population of authors and
subtracting this from the encoding for each author. The texture-
based encoding we use is the oBIF Column histogram scheme [16]
which has previously been used for character recognition.

The paper is structured as follows. In Section 2, we summarise
previous approaches to automated writer identification. We
describe the oBIF Column encoding scheme in Section 3
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and evaluate it using the IAM dataset. In Section 4 we introduce
the Delta encoding scheme. To evaluate our method, we made
entries to both the 2011 ICDAR [6] and 2012 ICFHR [17] Arabic
writer identification competitions, both of which were designed to
identify the state-of-the-art in writer identification techniques.
This is followed by a full characterisation of the method using the
datasets from the handwriting competitions. We then look at how
the new method compares to a more standard texture-based
approach, without the delta stage. In Section 5, we look at the
differences between texture-based and traditional methods and
discuss the implications for the problem of writer identification.
Finally, we provide a discussion and summary of the results.

2. Related work

Automated writer identification has typically been divided into
the online problem and the offline problem. Both versions use
images of handwriting samples, but the online version also
includes data on the path of the pen (e.g. [18,19]) and is therefore
considered an easier task. In this work we are concerned solely
with the offline problem.

Offline writer identification has been investigated for a range of
languages and alphabets. Early studies, such as those by Srihari
et al. using 1500 writers [14,15], established the feasibility of
automated writer identification for English writers. This has since
been demonstrated for a range of languages and alphabets,
including Arabic [20–25], Farsi [26], Kannada [27], Bangla [28],
Chinese characters [29–32], music scores [1–3,33] and multiscript
applications [34].

Approaches to writer recognition can generally be divided into
two groups, which we refer to as allographic and texture-based
methods. Allographic methods extract elements of the text, such
as characters or bigrams, and make comparisons in a like-for-like
manner. For example, instances of the bigram th may be extracted
from a passage of text and compared with other instances (or
allographs) of th found in a training set of images. The first stage in
these methods is the detection and segmentation of the allo-
graphic elements [35–41]. Once segmented these elements may be
used as greyscale images [35,36] or encoded according to char-
acteristics such as gradient histograms and concavity [42,43,14,15].
A classifier, such as Nearest Neighbour, is then used to assign each
element from the test set to an author from the training set.

As with manual methods used in forensic science, allographic
methods can be used to select certain specific features that are the
most discriminative for writer identification. For example, Bhard-
waj et al. have shown that certain bigrams, th and he, and
characters, d and f, were the most discriminative in their study
of English writer identification [44]. The ability to extract such
highly informative elements of the text may be advantageous
when large quantities of text are available from each author.
However, allographic methods have two major disadvantages.
First, they involve comparing particular elements of the text
like-for-like, these elements have to be present in both pieces of
text. It would be impossible, for example, to compare two words
which had no common letters. Therefore, when dealing with small
amounts of text, we would expect the performance of allographic
methods to suffer. Second, such techniques are unable to make
comparisons across different characters. If, for example, there was
a correlation between how authors wrote the letter a and the
letter e then this would not be picked up by these methods.

Texture-based methods may overcome some of these pro-
blems. With these methods, a piece of handwriting is encoded
without attempting to identify the content of the text and thus
comparisons are made across the whole piece of text. Many
different texture encoding schemes have been used from simple

analysis of the ink texture [45] to those that draw on modern
texture recognition methods from computer vision. Some make
use of the fact that handwriting is generally made up of line
segments and use edge-based [46,47] or directional features
[48,49]. Some methods use features specific to writing, such as
chain codes [50], geometrical features [51] or run length measure-
ments [5]. Other methods use a filtering approach, such as Gabor
filtering [52], Hermite features [53] or wavelet-based approaches
[54,20,55,56]. The current best-performing texture-based methods
use grey level co-occurrence matrix (GLCM) features [57] and local
phase quantisation (LPQ) features [58].

These methods allow for comparisons to be made between
pieces of text regardless of their content. This has the advantage
that it does not matter whether the pieces of text being compared
contain the same allographic elements, potentially reducing
the quantity of text required to perform writer identification.
Brink et al. have investigated how much text is required for four
sets of texture-based features, proposing a minimum of 100
characters [59].

However, unless such methods are absolutely invariant to the
content of the text there will be always be a certain level of
effective noise present. This may disappear as the quantity of text
becomes large, and the content of the text converges on the mean
for all text, but will place an upper bound on performance for
small quantities of text.

In an attempt to overcome this shortcoming, several methods
have made use of both allographic and textural features
[42,60,21,61,10,62]. Such methods can typically use information
from the document, bigram and character levels (e.g. [10]),
combined with a suitable learning framework that enables the
information from different sources to be combined for successful
recognition. Other methods that do not fit easily into the above
classification include those that use Hidden Markov Models [63] or
fractals [64].

3. The oBIF Column scheme for writer identification

We begin by describing the oBIF Column encoding scheme
which forms the starting point for our method of writer identifica-
tion. The oBIF Column scheme has been used previously for
character recognition [16] and texture recognition [65,66]. Here
we describe the scheme in full and explain how it has been
adapted for use in writer identification.

When the oBIF Column system is applied to the problem of
character recognition, the first stage is to encode the image of the
character to be recognised into oriented Basic Image Features
(oBIFs) at two scales. In this process, each location is classified
according to the local symmetry type and local orientation using a
bank of six Derivative-of-Gaussian (DtG) filters of a size deter-
mined by the scale parameter, s. There are seven possible
symmetry types which are slope, dark line, light line, dark rota-
tional, light rotational, saddle-like and flat.

The slope type is accompanied by a signed orientation and the
line and saddle types are accompanied by an unsigned orientation.
These orientations are quantised and the number of possible
unsigned orientations is given by the parameter ϕ. This means
that there are 2ϕ possible orientations for the slope type and ϕ
possible orientations for each of the dark line, light line and saddle
types. The dark rotational, light rotational and flat types have no
orientation. This results in a total of 5ϕþ3 different possible oBIF
types. The value of ϕ is tuned for each application, but previous
work has indicated that a value of 4 is adequate for near-optimal
performance [16]. Using this value we end up with 23 oBIF types.

The oBIF calculation takes an additional parameter, ε, which
determines whether a location is classified as flat. The oBIF
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