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a b s t r a c t

This paper presents a framework to fit data to a model consisting of multiple connected ellipses. For each
iteration of the fitting algorithm, the representation of the multiple ellipses is mapped to a Gaussian
mixture model (GMM) and the connections are mapped to geometric constraints for the GMM. The
fitting is a modified constrained expectation maximisation (EM) method on the GMM (maximising with
respect to the ellipse parameters rather than Gaussian parameters). A key modification is that the
precision of the chosen GMM is increased at each iteration. This is similar to slowly inflating a bunch of
connected balloons and so this is called balloon fitting. Extensions of the framework to other constraints
and possible pre-processing are also discussed. The superiority of balloon fitting is demonstrated
through experiments on several silhouettes with noisy edges which compare other existing methods
with balloon fitting and some of the extensions.

Crown Copyright & 2015 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Ellipses are useful for modelling and assessing shape. Although
non-linear they have simple equations and so are easy to work with.
By coupling several ellipses together, complicated structures with
joints can be modelled, for example the human upper body [1], the
human hand [2] and fish [3].

In this paper we propose a framework for fitting a silhouette to a
predetermined model of multiple connected ellipses. The framework
utilises a natural equivalence of multiple ellipses with a Gaussian
mixture model (GMM) to determine the fit using a variant of the
expectation maximisation (EM) algorithm. The entire silhouette is
used to avoid noise along the edges. A possible problem of the
iterative methods used in the maximisation is that the algorithm
could get stuck in a local maximum. To reduce this problem, we
proposed a novel balloon fitting algorithm and apply it iteratively
during the E-M procedure. To explain in words, the ellipses are cons-
idered as balloons that begin mostly deflated and then are inflated
each iteration of the EM algorithm until they become full size (in
terms of statistics, the variance of the GMM is increased at the
beginning and then slowly reduced each step).

There already exist many ellipse fitting algorithms. Wong et
al.'s survey article [4] shows the variety of methods and applica-
tions of ellipse fitting. There are two main approaches, least square
methods and Hough transforms. The classic work involving least
square methods is direct least square fitting in [5], however
improvements are still being made [6,7]. Hough transforms use
bins to determine the key parameters of ellipses. Although the five
parameters could make the searching of all the bins costly,
practical algorithms can be achieved using the parallel processing
power of GPUs [8] or randomised Hough Transforms (for example
[9]). Other tricks are to use Hough transforms to instead detect
tangents and then reconstruct the ellipse from its tangents [10].
Both main approaches can readily be used in a scene with multiple
ellipses (for example [6,8,9]).

However both of the main approaches to ellipse fitting are susce-
ptible to noise when fitting to silhouettes. All of the cited ellipse fitting
methods fit an ellipse curve to some data points. A common scenario
(as used in [6,8,9,11,12]) is to fit multiple ellipses to a silhouette. A pre-
processing step is used to determine the edge points of this silhouette
and then apply the ellipse fitting to these edges. Even if the majority of
the silhouette is reasonable, the edges can be difficult to obtain or can
be badly affected by noise. In this paper, we overcome this problem by
using the whole silhouette in the algorithm.

Ellipse fitting can also be applied where the multiple ellipses are
coupled together, for example [1,2,11–13]. These citations all use edge
(or boundary) values and so also are susceptible to noisy edges. The
coupling of ellipses is achieved through geometric constraints. Least
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squares methods can include these constraints, but force the least
squares to be solved iteratively rather than directly [12]. The downside
to numeric iterative methods is that they are sensitive to the initial
guess and can get stuck in local optima when performing optimisa-
tion. For example, in [2], Jeune et al. fit multiple connected 3D
ellipsoids to the edge of silhouette of a hand via an iterative
Levenberg–Marquadt (LM) algorithm. The paper acknowledges that
“sometimes the algorithm does not find the right solution”. A
common cause is because the LM algorithm gets “stuck in a local
minimum”. Weak initial estimates can promote this issue. The paper
reduces the issue by using the context of hands to detect the false
solution and hence fix it, however their solution is context dependent.
In our previous work [11], we reduced the issue by initially segment-
ing the data and then hierarchically fitting the ellipses according to the
joint structure. In this paper, we improved upon our previous work by
using balloon fitting to further reduce the issue.

Ellipse fitting can also be done using statistical techniques. Wong
et al.'s survey article, [4] classifies these as part of a third category –

titled “Other” for short. One example of this framework is [14]. Points
of the curve of the ellipse are modelled by Gaussians. Then maximum
likelihood estimation (MLE) is used to fit the curve to the noisy data.
The maximisation essentially reduces to a least squares method –

minimising the reprojection error. A downside to this particular article
[14] is that the method applies to all conics and so constraints are
required to guarantee an ellipse.

A useful way to get a ellipse specific statistical method is to use the
equivalence between ellipses and Gaussians. The articles [1,15] use
this equivalence in 3D to model 3D ellipsoids using 3D Gaussians. In
our previous work [11], we used this equivalence to cluster the data
and improve the initial guess before using an iterative least squares
method to refine the process. More precisely, multiple ellipses are
equivalent to a GMM. We temporarily ignored the connections of the
ellipses then used unconstrained EM to fit the GMM to the silhouette.
We then connected the ellipses and did the constrained optimisation
in the final step. One improvement given in this paper is to combine
these steps by constraining the GMM and doing the constrained
optimisation in theM-step of the EM algorithm rather than an entirely
separate stage. Phrasing the entire algorithm in terms of a constrained
GMM allows the variability to be modified during the optimisation. In
a similar way to simulated annealing this can help the algorithm not
get stuck in local optimums (which are not global optimums).

The EM algorithm has been used to fit a constrained GMM using
maximum likelihood estimation (MLE) in a variety of ways. One
simple technique to handle constraints is to run the M-step as normal
and then project onto the space of feasible models if the solution does
not satisfy a constraint (this approach does not guarantee the full
maximum, but it is easy to implement). This is seen for boundary
constraints where one wishes to constrain the parameters within
certain intervals. Alternatively, some constraints merely require a
change in the update equations for the M-step. For example with
linear subspace constraints parameters are restricted to be within a
linear subspace. This has been used for the covariance [16] and
precision matrices [17]. Another example this applies for is positive
equivalence constraints [18], where points are labelled as coming from
the same class. However, other constraints require an numerical
iterative M-step rather than a direct update of the unconstrained
GMM. This includes affine subspace constraints [19] and negative
equivalence constraints [18].

Another approach of incorporating constraints with GMM is to use
Bayesian priors. Then the EM algorithm is used to find the maximum a
posterior (MAP). This is equivalent to adding a penalty term in the
M-step. One example of this avoids a singular covariance matrix by
adding a prior to make the determinant of the covariance matrix be
0 with a low or zero probability. Another example is with spatial
constraints [20]. Spatially adjacent points are deemed more probable
to be from same mixture. This is achieved by adding a Markov

Random Field (MRF) prior. Instead of having a hard constraint, like
c¼ 0, priors allow softer constraints where we only insist that the
constraint is close to 0 with high probability. An example of this is the
kinematic constraints in [15]. These methods often make the M-step
not closed and so numerical optimisation is required.

Similar work to this paper are the kinematically constrained GMMs
given in [1,15]. Kinematics is how joints move in a body. For the 2D
case, kinematic constraints refer to the position of joints. In [1,15] they
have a collection of connected ellipsoids. The size of the ellipsoids is
determined manually at the start of the process, whereas the
ellipsoids are allowed to be translated and rotated. They have
kinematic constraints that join the ellipsoids at fixed locations and
then allow movement at the joints (there are several options in a 3D
model). The constraints in [15] are achieved by adding a prior so that
each constraint equation is not precisely zero, but rather a Gaussian
with zero mean. The variance for the constraints is fixed and not
modified during the algorithm. Alternatively in [1] the M-step is
modified to be a constrained optimisation. For both, the means and
covariances (actually just the rotational part of the covariance
matrices) of the components are learned using a modified EM
algorithm. Although some parts have a closed form, a gradient ascent
algorithm is required to handle all the constraints. This paper
improves upon the ideas in these articles by getting the EM algorithm
to learn the size of the ellipses as well and location and orientation. As
with any iterative optimisation method, these previous papers can
have issues with getting stuck in local optimums. This paper intro-
duces the balloon fitting modification to reduce this issue. This
modification is similar in purpose to simulated annealing where early
stages of the algorithm have higher variability so that local optimums
can be escaped.

The rest of this article is ordered as follows. In Section 2.1 we
introduce our mapping between multiple ellipses and a GMM. Our
general framework works regardless of the precise constraints used.
However, to make the article concrete we present a reliable way to
specify geometric constraints on the ellipses in Section 2.2. We then
explain how expectation maximisation (Section 2.3) with the balloon
fitting modification (Section 2.4) is used to fit the ellipse structure to
an image silhouette. We then complete the method section by looking
at some variations to the framework that could be used depending on
the context in Sections 2.5 and 2.6. In Section 3 we demonstrate the
effectiveness of the framework by comparing balloon fitting against
[11,1,15].

2. Our method

2.1. Mapping ellipses to Gaussians

To fit multiple connected ellipses, we need a mapping from an
ellipse to a Gaussian distribution. This mapping allows us to convert
the ellipse fitting into a maximum likelihood estimate (MLE) for a
GMM. We are interested in connected ellipses. Thus we will use the
following notation.

We assume that there are M ellipses (or Gaussian mixture
components), indexed by l. Each ellipse is parameterised by the
following five dimensional set of parameters: Θl

E ¼ ðxl
v; x

l
c; b

lÞ. The
first parameter, xl

v ¼ ðxlv; ylvÞ, corresponds to the location of a vertex of
the ellipse. The second parameter, xl

c ¼ ðxlc; ylcÞ, corresponds to the
centre of the ellipse. The last parameter corresponds to the length of
the other semi-axis. For example, if xl

v is a vertex on the major axis, b
is the length of the semi-minor axis. Of course, this parameterisation
depends on the choice of vertex.

Many other parameterisations of ellipses are possible and have
been used elsewhere. However, we have selected this one to best suit
the constrained optimisation we will perform later. When performing
optimisation numerically, all parameters should ideally have a similar

M. Kemp, R.Y.D. Xu / Pattern Recognition 48 (2015) 2198–2208 2199



Download English Version:

https://daneshyari.com/en/article/530098

Download Persian Version:

https://daneshyari.com/article/530098

Daneshyari.com

https://daneshyari.com/en/article/530098
https://daneshyari.com/article/530098
https://daneshyari.com

