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a b s t r a c t

In this paper we present a framework for accumulating on-line a model of a moving object (e.g., when
manipulated by a robot). The proposed scheme is based on Bayesian filtering of local features, filtering
jointly position, orientation and appearance information. The work presented here is novel in two
aspects: first, we use an estimation mechanism that updates iteratively not only geometrical information,
but also appearance information. Second, we propose a probabilistic version of the classical n-scan crite-
rion that allows us to select which features are preserved and which are discarded, while making use of
the available uncertainty model.

The accumulated representations have been used in three different contexts: pose estimation, robotic
grasping, and driver assistance scenario.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

This article presents a framework for on-line generation of an
internal representation of unknown objects or scenes, that are ob-
served by the system while subjected to motion. The proposed
method is generic and can be applied to any feature. Also, it allows
the correction over time of not only feature location, but also
appearance information. In contrast, the state-of-the-art focuses
on the accumulation of feature position only, while assuming the
invariance of the feature’s appearance; this invariance does not
hold when objects are fully rotated. Moreover, this framework
provides a complete representation of objects’ edges structure, that
makes it useful for a variety of visual as well as robotic tasks—as
illustrated in Section 4.

In a first step, local contour descriptors are extracted from the
image and reconstructed in 3D using stereopsis.1 The model itself
encodes the object’s contours directly in 3D, and associate to them
appearance information such as colour. The scene’s contours are
encoded in this representation as strings of local features called
3D-primitives, that provide a first representation of the 3D shapes
in the scene, enriched with appearance information. The appearance
information has the quality of being robust under viewpoint changes,

and therefore is used to improve matching reliability. At this stage,
the representation is merely a collection of 3D-primitives, objects
and background are not segmented in any way. By using the motion
knowledge provided either by a robot or a separate motion estima-
tion,2 we segment the object from the scene (by selecting primitives
that move according to the robot arm motion) and accumulate the
representation. Having control over the object provides a very accu-
rate knowledge of its motion that can be used to track individual 3D-
primitives. At each frame, new observations are used to correct the
3D-primitives’ full pose and to enrich the representation with new
aspects of the object (e.g., parts that were previously occluded).

The mechanism presented herein improves the 3D object model
obtained from stereo reconstruction in three respects:

1. Accuracy: The representation is corrected over time using new
observations.

2. Reliability: Tracking primitives over time, it is possible to re-
evaluate their reliability over time, and to discard erroneous ones.
Since the tracking is done in 3D space, the likelihood for erroneous
primitives to be tracked successfully is vanishingly small.

3. Completeness: Through manipulation of the object, the system
witnesses it under a wide range of viewpoints, and accumulates
2 1

2 D representations into a full 3D representation.
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1 Alternatively, shape-from-motion could be used to obtain 3D-primitives. One

additional complexity with this alternative is that the reconstruction uncertainty and
the motion uncertainty are then related. In this work we focus on stereopsis as it
allows for a simpler formulation.

2 In this work we will mainly show results using motion extracted from the robot
arm, for simplicity, but it could also be applied to visually computed motion (as in
Fig. 10C and [31]), as long as an estimate of the motion error can be computed. The
rationale behind using known motion is that it simplifies the problem and allows a
better interpretation of the accumulation error irrespectively of motion estimation
accuracy.
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This framework requires the capacity to track features over
time, and to correct their position using several frames. This is an
essential problem in computer vision, and solutions belongs to
two groups.

The first group consists of the geometric analytic solutions,
including multi-focal tensors [10] and bundle adjustment [40].
These approaches provide optimal solutions to the problem and
are prominent for solving the batch structure from motion (SFM)
scenario. They can be designed to be robust to erroneous data asso-
ciation (see [40] for a discussion). One major problem of these
solutions stems from the fact that they are fundamentally batch
processes: all views of the object need to be simultaneously avail-
able. This can make the problem intractable for large sequences,
and implies a large delay for any active system. It has been pro-
posed to split the problem into groups of, e.g., 3 frames, reducing
both delay and computational cost [23]. Nonetheless, these
approaches face the dead-reckoning problem: small motion errors
accumulate over time to lead to large localisation errors. Therefore,
they generally need an additional global integration stage. Nistér
[24] proposed a live SFM approach based on preemptive RANSAC.
Although the method is real-time it enforces strong constraints
on feature disparity, and is limited to the estimation of feature
position.

The second group uses various flavours of the Bayesian filtering
theory. This provides an on-line solution by formalising the prob-
lem as a Markov process where the state vector combines both
the current pose and the visual features’ bearing. This can be
formalised as the general Bayesian tracking problem—see [1] for
a review. This theoretical formulation allows for an optimal solu-
tion, i.e., a Kalman filter [13], if the state vector has a multivariate
normal distribution and if the prediction and observation pro-
cesses are linear. In the mobile robotics context, the object whose
model is being incrementally built is the environment itself,
described as a set of landmarks. The Kalman filter and its non-
linear derivatives (e.g., extended Kalman filter) have been used
extensively to solve the so-called simultaneous localisation and
map-building (SLAM) problem (see, e.g., [5,42,8,39,21]). Davison
[3] proposed a real-time monocular SLAM approach based on
EKF. Also Monte Carlo Markov Chains have been used for tracking
of multiple targets [15,16,44]. Tao et al. proposed a Bayesian
approach for 2D motion segmentation in videos [38].

Because of the on-line constraint, the approach presented in
this paper belongs to the second category. One essential difference
to typical SLAM systems, is the large number of local features that
the system needs to be able to track, to describe the object’s shape
completely, and the relatively low distinctiveness of these features,
whereas SLAM applications generally rely on few sparse yet very
distinctive features (e.g., SIFT [22]). Because of this large number
of features, we will track each feature individually instead of main-
taining a large joint covariance matrix. Moreover, we will track the
full pose of the features as well as their appearance properties to
make use of temporal information to improve both the accuracy
of these appearance cues, but also to generate an estimate over
time of their reliability—i.e., how invariant they are when the ob-
ject is manipulated. The knowledge of this invariance is critical
for object recognition and pose estimation. For example, for pose
estimation, invariant cues are important for matching, whereas
pose-dependent ones are important for estimating the pose.

The novel aspects of this work are:

� Full feature vector tracking: we make use of unscented Kalman
filtering (UKF) [12] to track the distribution in the whole feature
space, instead of only considering the feature’s position. This
includes the feature’s orientation in space and the observed col-
our on both sides of the edge. This allows us to keep track of the

relative reliability of different components of the feature vector
by their filtered variance. It also allows for a straightforward
extension to other feature types such as, e.g., junctions (see,
[37]) or surface patches.
� Probabilistic matching of features based on both geometric and

appearance information.
� Temporal re-evaluation of a feature’s confidence according to

the tracking success, and probabilistic argument for deletion
or preservation of features during occlusions.

The framework is described in Section 2, then evaluated on dif-
ferent scenarios in Section 3. Applications making use of these rep-
resentations are described in Section 4 before we conclude in
Section 5.

2. Methods

In this section, we present the vision framework used to accu-
mulate objects models. First in Section 2.1, we will describe the
local features that we use in this work. Note that the framework
is generic, and could be applied to any local feature that defines
a full pose and some appearance information. Then Section 2.2.5
defines the state space based on such features. Section 2.3
discusses the feature tracking and filtering scheme, based on
unscented Kalman filtering (UKF). Finally, Section 2.4 discusses
the confidence re-evaluation and the probabilistic n-scan criterion.

2.1. 3D line features extraction

In this work we use sparse image descriptors called visual prim-
itives, that exist both in 2D and 3D space, and were discussed in
[20,27,33]. In the 2D space, those primitives provide a condensed
representation of image information sparsely sampled along image
contours. In a first stage, linear and non-linear filtering operations
are applied to the image (see, e.g., [11]). These filtering operations
provide local information such as the likelihood that a pixel is on
an edge, the orientation of this edge, the phase (that contains the
type of contrast transition, see [17]) and the colour. Primitives
are first extracted at contours and form a feature vector containing
the edge position with sub-pixel accuracy, the local orientation,
phase (contrast transition), colour on both sides of the edge and
optic flow. Positions are detected sparsely with sub-pixel accuracy
at places likely to contain edges (see, e.g., [11] for a description). In
the following, we refer to such features as 2D-primitives.

Such 2D-primitives are extracted on stereo pairs of images and
are matched using the epipolar line and similarity constraints (see
Fig. 1B, and [30] for an assessment). Pairs of matched 2D-primi-
tives provide enough information to reconstruct the 3-dimensional
equivalent of a 2D-primitive, denoted 3D-primitive in the following
(see Fig. 1C). We direct the reader to [6,10] for a description on
classical stereo reconstruction and [27,33] for the special case of
primitives.

A 3D-primitive encodes a scene contour’s local position and ori-
entation along with the local contrast and colour on each side

s ¼ ðp;x; cÞ ð1Þ

where p is the full 6D pose in space; x is the local phase; c is a 6-
dimensional vector encoding the RGB colour values on both sides of
the contour. As a consequence, a 3D-primitive is encoded as a 13-
dimensional feature vector.

A 3D-primitive’s covariance is encoded as the 13 � 13 block-
diagonal matrix R

Ri ¼
RG;i

RA;i

� �
ð2Þ
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