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a b s t r a c t

A support vector machine (SVM) is a popular algorithm for classification learning. The classical SVM
effectively manages classification tasks defined by means of numerical attributes. However, both
numerical and nominal attributes are used in practical tasks and the classical SVM does not fully
consider the difference between them. Nominal attributes are usually regarded as numerical after
coding. This may deteriorate the performance of learning algorithms. In this study, we propose a novel
SVM algorithm for learning with heterogeneous data, known as a heterogeneous SVM (HSVM). The
proposed algorithm learns an mapping to embed nominal attributes into a real space by minimizing an
estimated generalization error, instead of by direct coding. Extensive experiments are conducted, and
some interesting results are obtained. The experiments show that HSVM improves classification
performance for both nominal and heterogeneous data.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade, the support vector machine (SVM) classifier
[1] has proven to be an effective method in the field of machine
learning. SVM possesses advantages with respect to the manage-
ment of high dimensional data and reveals effective generalization
capability. It has been widely used in various applications, includ-
ing handwritten digits recognition [2,3], time series classification
[4,5], gene selection [6,7], and image retrieval [8–10].

However, SVM assumes that samples are represented with vectors
of real numbers [11]. If nominal attributes exist, they are usually
converted into numerical attributes before learning occurs. Integer and
one-of-n coding are popular methods used in managing nominal
attributes. If the number of values in a nominal attribute is not large,
one-of-n coding might be more stable than integer coding [11]. In fact,
both methods possess disadvantages. Regarding integer coding, per-
formance is easily affected by the coding mechanism because different
coding methods lead to different distances between samples. With
respect to one-of-n coding, a nominal attribute is mapped into
multiple binary attributes. After one-of-n coding is completed, the
number of attributes is equal to the number of values of the original
nominal attribute. This method can effectively prevent instability
problems in integer coding. However, it may dramatically increase
the dimensions of samples if a lot of different values exist in the
nominal attributes. Furthermore, both integer coding and one-of-n

coding do not take full advantage of the implicit classification
information of samples.

Three different methods exist for managing heterogeneous data.
The first is to convert nominal attributes to integers through coding,
and then consider them as numerical attributes. Its major problem is
instability as the performance is easily affected by the use of a coding
mechanism. The second method is to discretize numerical attributes,
and then treat them as nominal attributes, as done in C4.5 [12],
classification and regression tree (CART) [13] and other methods. In
general, discretization causes information loss. The third method is to
learn a distance, such as the value difference metric (VDM), hetero-
geneous value difference metric (HVDM) and other methods [14–16].
This type of method can be combined with classifiers based on
distance (e.g. K-nearest neighbor) [17,18]. In distance learning algo-
rithms, we usually adopt an overlap method or a Bayesian approach to
deal with nominal attributes. The overlap is a simple and effective
method. However, it only determines whether nominal attributes are
equal to one another, and does not fully exploit classification informa-
tion. The Bayesian approach is very effective for handling nominal
attributes. However, the use of this approach implies that all attributes
are independent. Therefore, its performance will degenerate if relation
among attributes is very high. Such as XOR data, the probability of
each attribute is the same, VDM then results in zero distance between
attributes [19]. Moreover, the performance of these algorithms may
deteriorate when decisions depend on multiple attributes [19].

Essential differences exist between nominal and numerical attri-
butes. In general, a numerical attribute describes a particular feature
of a sample. If the value of a numerical attribute is changed, the
entire sample is changed such that the new sample is no longer the
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previous. However, the value of a nominal attribute simply indicates
a certain nominal value and does not describe the specific character
of the sample. Regardless of the value of nominal attribute, as long as
the same nominal attribute is assigned the same value, no problems
will occur. Thus, the nominal attribute is not limited to a fixed value
which makes it possible for a nominal attribute to be mapped into a
real number according to the classification information. Based on this
observation, we develop a new approach to manage nominal
attributes. In order to deal effectively with heterogeneous data, we
use classification information by mapping nominal attributes into a
real space based on generalization error estimation. The values of
nominal attributes are obtained from an optimization task rather
than from integer or one-of-n coding. After mapping is completed,
nominal attributes are treated numerically in the subsequent learn-
ing procedure.

SVM has been successfully applied to various classification
tasks that use numerical data. However, the topic of training
SVM with heterogeneous data has not been fully examined. In
this study, we design a novel heterogeneous support vector
machine (HSVM) algorithm to classify heterogeneous data. Our
HSVM maps nominal attributes into a real space by minimizing
generalization error. The main advantages of HSVM are listed as
follows: (1) HSVM can effectively improve the performance of
SVM in dealing with nominal data or heterogeneous data,
(2) HSVM can improve the interpretability of decisions, and
(3) HSVM is effective in learning with imbalanced data.

The remainder of this paper is organized as follows. Section 2
reviews related studies. Section 3 presents a novel mapping
algorithm for nominal attributes and HSVM. Sections 4 and 5
analyze the experiments using standard datasets. Section 6 con-
cludes our study.

Notations used in the paper are described as follows. The
variable n represents the number of training samples and xi
represents a sample with an index i. For nominal attributes, we
use ak to refer to the kth nominal attribute of the samples. Its
values are expressed as fak1; ak2;…; akmg.

2. Related works

We map nominal attributes into a real space by minimizing the
generalization error, and then use SVM to manage heterogeneous
data. Thus, in this study, we employ the SVM algorithm, general-
ization error, and heterogeneous data. In this section, we review
relevant terms and algorithms.

2.1. SVM and kernel functions

SVM is an effective method for binary classification tasks.
It constructs an optimal separating hyperplane in a feature space.
By a function Φ, we map an input vector x into a high dimensional
feature space [20]. Given n samples fðxi; yiÞgni ¼ 1, SVM searches for a
linear decision function with a maximum margin between differ-
ent classes in the feature space, where xi is an input vector with d
dimensions, and yi is a class label of xi. The decision function
f ðxÞ ¼ 〈w;ΦðxÞ〉þb defines a linear hyperplane in the feature space.
The parameters w and b are obtained by solving the following
convex quadratic problem:

min
w;b

1
2
JwJ2þC

XN
i ¼ 1

ξi;

s:t: yið〈w;ΦðxÞ〉þbÞZ1�ξi; ξiZ0; 8 i; ð1Þ
where C is a constant that penalizes for the training errors and ξi is
a slack variable. wARd and bAR are the parameters of the
hyperplane [1]. Instead of solving this optimization problem, we

use the Lagrangian dual function to obtain a dual formula:

max
α

Xn
i ¼ 1

α�1
2

Xn
i ¼ 1

Xn
j ¼ 1

αiαjyiyj〈ΦðxiÞ;ΦðxjÞ〉;

s:t:
Xn
i ¼ 1

αiyi ¼ 0; 0rαirC; 8 i; ð2Þ

where αi is a dual variable and contains the upper bound C. The
inner product 〈ΦðxiÞ;ΦðxjÞ〉 in the feature space is computed by a
kernel function: 〈ΦðxiÞ;ΦðxjÞ〉¼ Kðxi; xjÞ. By means of the kernel
function, the inner product in a high dimensional feature space
can be efficiently computed without an explicit nonlinear map-
ping. The dual formula shown in (2) is a convex quadratic
optimization problem and possesses a global optimal solution
[21]. The linear kernel function (KLINðxi; xjÞ), polynomial kernel
function (KPOLðxi; xjÞ) and Gaussian kernel function (KGAUðxi; xjÞ) are
widely used in the following:

KLINðxi; xjÞ ¼ 〈xi; xj〉;
KPOLðxi; xjÞ ¼ ð〈xi; xj〉þ1Þq; qAN;

KGAU ðxi; xjÞ ¼ exp � Jxi�xj J2

2σ2

 !
; σARþ : ð3Þ

2.2. Generalization error estimation

Some techniques used to estimate generalization errors, such as
leave one out (LOO) as well as span and radius margin estimations, are
common. LOO estimation consists of three steps: (1) remove one
element from the training data, (2) construct a decision function over
the remained data, and (3) test the model with the removed element
[20]. LOO is nearly unbiased as an estimator of the expected
generalization error [1], where the estimation is given as

Eðpn�1
err Þ ¼ 1

n
EðLðx1; y1;…; xn; ynÞÞ; ð4Þ

where pn�1
err is a probability of a classification error tested on the

samples of size n�1, and Lðx1; y1;…; xn; ynÞ is the number of
misclassified samples. LOO is an important statistical estimator
of learning algorithms and it is frequently used in model selection.
Unfortunately, it is time-consuming, as testing of each element in
the training samples is required. Some generalization error esti-
mations are derived from LOO, such as the span and radius margin
estimations [1].

The concept of span for support vectors was first proposed by
Chapelle and Vapnik [22]. The span is derived from an LOO error
estimation [1,20] and the upper bound of the span is computed by
means of

T ¼ 1
n

Xn
i ¼ 1

Ψ ðαn

i s
2
p�1Þ; ð5Þ

where Ψ is a step function (i.e. Ψ ðxÞ ¼ 1 if xZ0, and Ψ ðxÞ ¼ 0
otherwise) [20] and αn

i is the optimal solution for dual formation,
as shown in (2). The variable s2p is the distance between the point
ΦðxpÞ and set Λp in the feature space where

Λp ¼
X

iap;αn

i Z0

λiΦðxiÞ;
X
iap

λi ¼ 1

8<
:

9=
;: ð6Þ

The span is an upper bound of LOO and is not continuous. A
small change in kernel functions causes a considerable change in
the support vector set Λp. This change is discontinuous and results
in discontinuous changes to s2p and error bound T [20].

The radius margin estimate is another generalization error
estimation and can be considered as a rough upper bound of the
span estimation. Suppose that the maximal distance between
different classes is γ, and R is the minimum radius of a sphere
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