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a b s t r a c t

In this paper, we consider the problem of unsupervised clustering (vector quantization) of multi-
dimensional numerical data. We propose a new method for determining an optimal number of clusters
in the data set. The method is based on parametric modeling of the quantization error. The model
parameter can be treated as the effective dimensionality of the data set. The proposed method was
tested with artificial and real numerical data sets and the results of the experiments demonstrate
empirically not only the effectiveness of the method but its ability to cope with difficult cases where
other known methods fail.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cluster analysis can be characterized as an attempt to represent
a large population (data set) by a smaller number of points
(centroids) thus sacrificing some of the information in favor of a
more economic representation and more efficient processing of
data. A large body of work has been dedicated to clustering
validity criteria; the work of Milligan and Cooper [1] provides an
extensive collection of references, which have been complemented
by more recent surveys [2–4].

Estimation of the number of clusters in a data set is an
important theoretical and practical problem in cluster analysis.
With too few clusters, one cannot preserve the most relevant
information about the structure of the data set X. On the other
hand, with too many clusters, resources are wasted by processing
non-relevant data. Although many algorithms have been sug-
gested, there does not appear to be one most reliable method.

Our paper contributes to the quest for an effective method to
establish the optimal number of clusters. The rest of the paper is
organized as follows. The problem is formulated in Section 2 and
several known methods reviewed in Section 3. Section 4 presents
our solution to the problem. A new parametric model of the

quantization error is introduced and a validity criterion derived from
this model. In Section 5, we discuss the results of experiments with
a number of data sets and provide comparisons with other methods.
Section 6 presents conclusions.

2. Problem formulation

The problem comprises a data set X¼{x1, …, xN} that consists
of N points in a d-dimensional space: xi¼(xi,1, …, xi,d). The data are
clustered into M clusters {C1, …, CM}. A cluster Cj is defined by the
centroid cj¼(cj,1, …, cj,d) and the indices of data points in the
cluster. The mean value x and the variance σ2x of X are defined as
follows:

x¼ 1
N

∑
N

i ¼ 1
xi; ð1aÞ

σ2x ¼
1
N

∑
N

i ¼ 1
‖xi�x‖2: ð1bÞ

The error caused by clustering (quantization error) of the
continuous numerical data can be defined as within-class variance
Wm (Mean Square Error, MSE):

Wm ¼ 1
N

∑
M

j ¼ 1
∑

xi ACj

‖xi�cj‖2: ð2Þ
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Thus, the objective of our studies is to find an optimal balance
between the clustering (quantization) error Wm and the number of
clusters M.

3. Known solutions

The problem can be solved by introducing a cost function that
incorporates the number of clusters and the error in clustering
[1–4]. A number of approaches have been proposed as solutions
and these approaches can be categorized as being based on the use
of optimization-like criteria, difference-like criteria, and other meth-
ods [1,3]. When using optimization-like criteria, the optimal number
of clusters is given by the minimization (maximization) of a certain
cost function. With difference-like criteria, sharp changes in the
values of the cost function are found by analysis of the difference or
ratio of chosen cost function value for sequential points.

3.1. Optimization-like criteria

One of the most popular optimization-like criteria, CH [5] is
based on the ratio of between-class Bm and within-class variances
Wm

CHðmÞ ¼ Bm UðN�mÞ
Wm U ðm�1Þ; ð3aÞ

M¼ arg max CHðmÞ� �
: ð3bÞ

Here between-class variance Bm is defined as follows:

Bm ¼ σ2x �Wm ¼ 1
N

∑
m

j ¼ 1
nj U‖cj�x‖2; ð4Þ

where nj is the number of points in the cluster Cj.
A similar criterion TWH was mentioned in Ref. [6] as a possible

modification of the criterion CH:

TWHðmÞ ¼ Bm U ðN�mÞ
Wm Um

; ð5aÞ

M¼ arg max TWHðmÞ� �
: ð5bÞ

To compare the criterion CH with other criteria, we will use the
inverted criterion CHn:

CHnðmÞ ¼Wm Uðm�1Þ
Bm U ðN�mÞ ; ð6aÞ

M¼ arg max CHnðmÞ� �
: ð6bÞ

The following slight modification of the inverted CHn criterion
was presented in Refs. [7,8] and later studied in Ref. [9]:

ZXFðmÞ ¼Wm Um
Bm

; ð7aÞ

M¼ arg max ZXFðmÞ� �
: ð7bÞ

The so-called heuristic mean-square-error was used in Ref. [10]

LAðmÞ ¼Wm U ðmþ1Þ1=2; ð8aÞ

M¼ arg max LAðmÞ� �
: ð8bÞ

A more general criterion for D-dimensional data clustering was
proposed in Ref. [11]

XuðmÞ ¼Wm Um2=D; ð9aÞ

M¼ arg max XuðmÞ� �
: ð9bÞ

With optimization-like criteria, the number of clusters in X is
given by the minimum of the corresponding cost function LA, ZHF,
Xu, and CHn.

3.2. Difference-like criteria

The difference-like criterion KL is close to the criterion Xu, but
search for the number of clusters is based on the ratio of
differences of the criterion [12]

KLðmÞ ¼ Wm�1 U ðm�1Þ2=D�Wm Um2=D

Wm Um2=D�Wmþ1 Uðmþ1Þ2=D

�����
�����; ð10aÞ

M¼ arg max KLðmÞ� �
: ð10bÞ

Based on the Information Theory approach, the following
difference-like criterion SJ was proposed in Ref. [13]:

SJðmÞ ¼W �2=D
m�1 �W �2=D

m ; ð11aÞ

M¼ arg max SJðmÞ� �
: ð11bÞ

The difference-like criteria KL and SJ are usually less accurate
than algorithms based on optimization-like criteria [1]. “Knee” and
“elbow” detection algorithms, and other difference-like criteria
with 1st and 2nd difference calculation are too sensitive to
unavoidable variations of the cost function caused by noise in
the calculated quantization error [1].

In addition to the above-mentioned criteria based only on the
clustering error, methods exist with cost functions that include a
heuristic penalty function [14–21]. The main drawback with these
criteria is that their results depend on the heuristic function in use.

4. Novel parametric criterion

To overcome such undesirable cost function dependence as
displayed by the methods listed above, we introduce a broad
parameterized family of cost functions. Moreover, the parameter
that identifies particular members of the cost function family is
closely related to the data at hand, yet can be determined
automatically.

4.1. Parametric modeling of the quantization error

The clustering error as a function of the number m of clusters is
called the rate–distortion (R–D) curve. In our case, this is a within-
class variance (Mean Square Error) Wm. Examples of R–D curves for
two data sets are given in Fig. 1. In theory, the R–D function is
always a monotone decreasing function: adding more clusters
causes the distortion to decrease. When the number of centroids is
small, the error first decreases dramatically, then more slowly,
until it flattens to almost zero as the number of clusters
approaches the number of data points. The actual shape of the
R–D curve, or the behavior of the clusterization error as a function
of the number of clusters, depends on the distribution of the data
points in the D-dimensional space.

A model of clusterization (quantization) error is required to be
able to find the number of clusters. The quantization error for
uniformly distributed D-dimensional data forms the starting point
for the modeling. In such cases, the quantization error with error
measure L2 for a uniform vector quantizer with m clusters is

Wm ¼ Const
m2=D : ð12Þ

Based on (12), the following parameterized model of the
quantization error in the general case can be introduced:

Ŵm ¼ Const
m2=a : ð13Þ

where a is the parameter of the model. The quantization error Wm

can then be approximated by the following log-linear model with
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