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a b s t r a c t

Multiconlitron is a general framework for designing piecewise linear classifiers, but it may contain a
relatively large number of conlitrons and linear functions. Based on the concept of maximal convexly
separable subset (MCSS), we propose alternating multiconlitron as a novel framework for piecewise
linear classification. Using the support alternating multiconlitron algorithm, an alternating multi-
conlitron can be constructed as a series of conlitrons alternately from a subset of one class to the MCSS
of the other class. Experimental results show that in practice an alternating multiconlitron generally has
a much simpler structure than a corresponding multiconlitron, performing very fast in testing phase
with similar or better accuracies.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

As a fundamental problem in pattern recognition, piecewise linear
classifier (PLC) design has been a research topic attracting a lot of
attention. A PLC extends a linear boundary for approximating an
arbitrarily complicated nonlinear boundary [1], with the advantage of
easy implementation suitable for small reconnaissance robots, intel-
ligent cameras, imbedded and real-time systems, and portable devices
[2]. However, it is a challenging and complicated task to synthesize a
PLC with an appropriate number of hyperplanes.

Over the last few decades, many methods have been presented to
construct PLCs. In 1980, Sklansky and Michelotti [3] described a local
training method to design PLCs. This method first uses Forgy's
algorithm to form prototypes, and then finds all close-opposed pairs
of prototypes to produce a set of initial hyperplanes for local training
with the data in the prototype regions. Based on the local training
method, Park and Sklansky [4] developed a Tomek-link-cutting
algorithm to design multi-class PLCs, which sometimes suffers from
underfitting due to an insufficient number of hyperplanes. To resolve
this problem, Tenmoto [5] used the minimum description length
(MDL) criterion to choose an appropriate number of linear hyper-
planes while keeping the local training error rate under a threshold. In
1996, Cai et al. [6] employed a binary tree structure and genetic
algorithm to design PLCs under the guidance of maximum impurity
reduction criterion. In 2006, based on the tree division of subregion

centroids, Kostin [2] proposed and implemented a simple and fast
multi-class PLC with acceptable classification accuracies. In 2010, Gai
and Zhang [7] presented a two-step method to construct a piecewise
linear model for classification, where the first step samples some
boundary points to give a nonparametric decision surface and the
second step uses Dirichlet process mixtures (DPM) to simplify this
surface for linear surface segmentation.

A PLC can also be constructed by an approach of max–min
separability [8–10], where a non-convex and non-smooth error
function is minimized by the discrete gradient to construct a piece-
wise linear function in the form of a max–min of linear functions. But
this method requires a prespecified set of integers for describing how
to organize linear functions in groups. Theoretically, a max–min of
linear functions may also be called a “multiconlitron”, which is
recently presented as a general framework for constructing PLCs
[11] with a union of conlitrons based on the concept of convex
separability. Different from a max–min construction, a multiconlitron
can be dynamically constructed in training without a prespecified set
of integers for grouping linear functions. In fact, using the support
conlitron algorithm (SCA) and the support multiconlitron algorithm
(SMA) [11], we can construct support conlitrons and support multi-
conlitrons as a non-kernel extension of support vector machines, since
they can respectively separate two convexly separable and commonly
separable data sets by the maximummarginwithout kernel functions.
However, a multiconlitron may contain a relatively large number of
conlitrons and linear functions.

In this paper, we propose alternating multiconlitron as a novel
framework for designing PLCs, based on the concept of maximal
convexly separable subset (MCSS). Using the support alternating
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multiconlitron algorithm (SAMA), we can construct an alternating
multiconlitron as a series of conlitrons alternately from a subset of
one class to the MCSS of the other class, which generally has a
simpler structure than the corresponding multiconlitron.

The rest of the paper is organized as follows. In Section 2, we
discuss the concept of maximal convexly separable subset. In Section
3, we explain the meaning and existence of alternating multiconlitron.
Then, we present the support alternating multiconlitron algorithm
(SAMA) for constructing an alternating multiconlitron in Section 4,
and evaluate its performance in Section 5. Finally, we conclude the
paper in Section 6.

2. Maximal convexly separable subset

Let Rn be the n-dimensional Euclidean space. Throughout this
paper, we use X and Y to represent two finite nonempty subsets of
Rn unless specified otherwise. For any X � Rn, we use CH(X) to
denote the convex hull of X, namely

CHðXÞ ¼ xjx¼ ∑
1r ir jXj

αixi; ∑
1r ir jXj

αi ¼ 1; xiAX; αiZ0; αiAR

( )
:

ð1Þ

In addition, we define two distance functions as follows:

dðx; yÞ ¼ Jx�yJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�yÞ � ðx�yÞ

p
; 8x; yARn;

dðx;YÞ ¼ dðY ; xÞ ¼ inffdðx; yÞ; yAYg; 8xARn; 8Y � Rn: ð2Þ
Furthermore, we use dðx;CHðYÞÞ to stand for the distance from

point x to the convex hull of Y.
We call that X is convexly separable to Y, if there exists a conlitron

– Convex Linear Perceptron (CLP) from X to Y [11]. A conlitron is a set
of linear functions, i.e.

CLP ¼ ff lðxÞ ¼wl � xþbl; ðwl; blÞARn � R; 1r lrLg; ð3Þ

satisfying the following two conditions:

8xAX; 81r lrL; f lðxÞZ0;
8yAY ; (1r lrL; f lðyÞo0: ð4Þ
The decision function of a CLP is defined as

CLPðxÞ ¼
þ1; 81r lrL; f lðxÞZ0;
�1; (1r lrL; f lðxÞo0:

(
ð5Þ

“Convexly separable” exactly means that X can be surrounded inside
by a set of linear functions that constitute a CLP, excluding Y outside.
We have Lemma 1 for two convexly separable data sets.

Lemma 1. Given two finite nonempty data sets X and Y, X is convexly
separable to Y if and only if Y \ CHðXÞ ¼ |.

Actually, Lemma 1 is a restatement of Theorem 7 in Ref. [11].
Suppose Z is a subset of Y. If X is convexly separable to Z, and for any
bigger subset Z0ð*ZÞ of Y, X is convexly nonseparable to Z0, then Z is
called a maximal convexly separable subset (MCSS) of Y away from X.

Fig. 1 displays an example of MCSS. After proving two theorems
about convex hull, we have an important theorem for the existence
of MCSS. Note that in the following theorems, X \ Y ¼ |means X and
Y are two finite nonempty and nonintersecting data sets. Moreover,
they should be taken as training samples from two classes.

Theorem 1. If X \ Y ¼ |, then CHðXÞaCHðYÞ.

Proof. Supposing CHðXÞ ¼ CHðYÞ, we can get that the two convex
hulls must have the same set of vertices. That is, each vertex in the
set belongs to both X and Y. This contradicts X \ Y ¼ |. □

Notably, Theorem 1 means that if two finite nonempty sets have
no common points, then their convex hulls cannot be identical.
Accordingly, we obtain Theorem 2.

Theorem 2. If X \ Y ¼ |, then (xAX; x=2CHðYÞ or (yAY ;
y=2CHðXÞ.

Proof. Supposing 8xAX; xACHðYÞ and 8yAY ; yACHðXÞ, we have
X � CHðYÞ and Y � CHðXÞ. Accordingly, we have CHðXÞD CHðYÞ and
CHðYÞDCHðXÞ, i.e., CHðXÞ ¼ CHðYÞ. This contradicts Theorem 1. □

Theorem 3. If X \ Y ¼ |, there must exist a unique MCSS of Y away
from X or a unique MCSS of X away from Y.

Proof. According to Theorem 2, we might assume that
(yAY ; y=2CHðXÞ. Thus, we can construct a subset Z of Y, i.e.

Z ¼ Y�CHðXÞ ¼ fyjyAY ; y=2CHðXÞg:
According to Lemma 1, X is convexly separable to Z. Therefore, for
any bigger subset Z0ð*ZÞ of Y, X is convexly nonseparable to Z0.
This means Z is a unique MCSS of Y. □

3. Alternating multiconlitron

Using the concept of MCSS, we will define an alternating
multiconlitron as a series of conlitrons. If X is convexly separable
to Y, they can be separated by a conlitron. In case of X \ Y ¼ |, they
can be separated by a multiconlitron or an alternating
multiconlitron.

A multiconlitron is a union of multiple conlitrons. MCLP ¼
fCLPk;1rkrKg is a multiconlitron from X to Y [11], if and only if

8xAX; (1rkrK ; CLPkðxÞ ¼ þ1;
8yAY ; 81rkrK ; CLPkðyÞ ¼ �1: ð6Þ
The decision function of a MCLP is defined as

MCLPðxÞ ¼
þ1; (1rkrK ; CLPkðxÞ ¼ þ1;
�1; 81rkrK ; CLPkðxÞ ¼ �1:

(
ð7Þ

It can be said that each CLPk in a MCLP from X to Y generates a
convex region covering a part of X, and the MCLP is the union of
these convex regions for covering the whole set of X. Fig. 2
illustrates the structure of a MCLP from X to Y with one, two or
three conlitrons, respectively. Note that if X and Y are commonly
separable (i.e., nonintersecting or having no common points), we
can always construct multiconlitrons in two directions: one from X
to Y (see Fig. 3(a)) and the other from Y to X (see Fig. 3(b)).
Furthermore, different conlitrons in a MCLP may overlap each
other theoretically (see Fig. 3(a)). However, if one conlitron is
nested in another, it will be redundant and can be dropped out. For
example, in Fig. 3(a) CLP2 is redundant, whereas CLP1 is necessary.

Z
Z

CH(X)

: X
: Y

Fig. 1. An example of MCSS.
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