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a b s t r a c t

This paper presents a novel low-rank matrix factorization method, named MultiHMMF, which
incorporates multiple Hypergraph manifold regularization to the low-rank matrix factorization. In order
to effectively exploit high order information among the data samples, the Hypergraph is introduced to
model the local structure of the intrinsic manifold. Specifically, multiple Hypergraph regularization
terms are separately constructed to consider the local invariance; the optimal intrinsic manifold is
constructed by linearly combining multiple Hypergraph manifolds. Then, the regularization term is
incorporated into a truncated singular value decomposition framework resulting in a unified objective
function so that matrix factorization is changed into an optimization problem. Alternating optimization
is used to solve the optimization problem, with the result that the low dimensional representation of
data space is obtained. The experimental results of image clustering demonstrate that the proposed
method outperforms state-of-the-art data representation methods.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the development of data acquisition technology
has resulted in a rapid accumulation of a large amount of high-
dimensional data in many fields. Selecting suitable data represen-
tation is usually the first step to design an effective data analysis
algorithm. Many data representation methods have been pre-
sented, among which matrix factorization [1–3] is important for
simple and easy implementation such as the following: QR, LU
decomposition, Truncated singular value decomposition (TSVD),
Non-negative matrix factorization (NMF), etc. TSVD and NMF are
two common methods, which can be implemented iteratively via
matrix–vector products and multiplicative updating rules, respec-
tively. Because of the current popularity of NMF, most work
focuses on introducing a new regularization term to the original
NMF framework. These regularization terms make the data repre-
sentation more suitable for classification, clustering and retrieval.
Many NMF variants [4–7] were proposed by adding a regulariza-
tion term such as sparse constraint to the original NMF frame-
work. The geometrical structure of data space is also considered as
a manifold regularization term, and it usually assumes that the
data is sampled from the intrinsic low-dimensional manifold.

Furthermore, manifold learning [40–41] uses a so-called locally
invariance idea, namely nearby points are likely to be similarly
embedded to discover the underlying geometrical structure.

Manifold learning [8–11,36–39] usually uses a p-nearest neigh-
bor graph to model the intrinsic manifold. This graph considers only
the pair-wise relationship between the two data samples. Due to
manifold underlay from the sampled data set, selecting the optimal
manifold for the task of analyzing specific data is usually difficult
and time consuming. To address this problem, a multiple graph
regularization term [12] is added to the original NMF framework. A
multiple graph regularized NMF method is proposed where graph
selection and matrix factorization are automatically implemented
by alternating optimization. However, another problem, ignored by
most researchers, is the balance between matrix factorization and
graph regularization. If the same approximate rank is taken, NMF
has a larger approximation error in the Frobenius norm than the
traditional TSVD method. A good data representation method
should have as small an approximation error as possible and yet
preserve the nonlinearity of data space. Based on this idea, a novel,
low-rank matrix factorization [13], named MMF, is proposed where
the manifold regularization term is added to the TSVD framework
to leverage the regularization term and matrix factorization. MMF
more effectively preserves the nonlinear structure of data space.

Based on recent efforts in both matrix factorization and manifold
learning, this paper proposes a novel low-rank matrix factorization
method with a multiple Hypergraph regularizer. It uses Hypergraph
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to model the high-order relationship among the data samples. In
order to select the optimal intrinsic manifold for a low-rank
matrix factorization task, the proposed method fuses multiple
Hypergraphs to approximate the intrinsic manifold inspired by an
ensemble manifold regularizer [14]. Furthermore, to enhance the
regularization effectiveness, a novel multiple Hypergraph regulariza-
tion term is formulated and incorporated into the traditional TSVD
framework.

Multiple graph regularized NMF [12] (MGrNMF) is closely
relevant to our proposed method. MGrNMF performs better on
real world datasets. However, it has two disadvantages: (1) the
high-order relationship among samples are ignored in graph-
based learning methods, and MGrNMF only considers the pair-
wise relationship between two samples; (2) the balance between
linear factorization and manifold regularization is ignored, i.e., the
non-negative constraint in MGrNMF leads to the larger approx-
imation error of linear factorization, which further affects the
regularization term. The proposed regularization in MHGrMMF
adopts Hypergraph instead of simple graph to model the intrinsic
manifold. Hypergraph can effectively model high-order relation-
ship among data samples. Therefore, the first disadvantage of
MGrNMF is addressed. In addition, MHGrMMF incorporates
Hypergraph regularization term into the TSVD framework, which
relaxes the non-negativity constraint in MGrNMF to the orthogo-
nal constraint. Due to the fact that TSVD framework has a smaller
approximation error in Frobenius norm than NMF framework,
MHGrMMF can effectively leverage the linearity factorization and
the Hypergraph manifold regularization. Thus, the second disad-
vantage of MGrNMF is addressed.

The contributions of this paper are listed below:

1) A novel multiple Hypergraph regularization term is proposed
where a Hypergraph, instead of a simple graph, is introduced to
model the intrinsic manifold; therefore, a high-order relation-
ship among the data samples is considered. A Hyperedge of a
Hypergraph connects more than two vertices, which simulta-
neously capture the locality among the data samples within the
same hyperedge. Furthermore, a multiple Hypergraph regular-
ization term is formulated where the intrinsic manifold is
approximated by the linear combination of the previously
given Hypergraph Laplacians. Minimizing the proposed regu-
larization term can guarantee the smoothness of data repre-
sentations in low-dimensional space.

2) To enhance regularization efficiency, a low-rank matrix factor-
ization algorithm is proposed, and the multiple Hypergraph
regularization term is incorporated into the TSVD framework.
Compared with the NMF framework, the proposed algorithm
attempts to minimize the approximation error in low-rank
factorization; at the same time, it preserves the nonlinear
structure of data space. Thus, the proposed algorithm balances
the best linear approximation of SVD and nonlinear dimen-
sionality reduction.

3) The clustering performance of the proposed algorithm is
analyzed by conducting comprehensive experiments. In addi-
tion, a comparison of experimental results with state-of-the-art
data representation methods is provided, and a discussion of
the details is also presented. In particular, we developed other
graph-involved methods and compared them with the pro-
posed method in four real world datasets.

The remainder of the paper is arranged as follows: In Section 2, we
introduce related work. In Section 3, we present the unified objective
function of the proposed method in detail. In Section 4, we propose an
alternate iterative algorithm. In Section 5, we benchmark the proposed
method, compare it with state-of-the-art methods, and present a
discussion. We conclude the paper in Section 5.

2. Related work

2.1. NMF and TSVD

Matrix factorization is an important low-dimensional data
representation method. Assuming N data points with their
non-negative feature set X¼ fXig, i¼ 1;…;N, we denote all their
features as a non-negative data matrix X¼ ½Xi�AℝM�N

þ , where the
ith column, Xi, is the feature vector of the ith data point. Matrix
factorization aims to locate the two matrices BAℝM�r and
FAℝr�N , whose product approximates well the original matrix,
X, i.e., X� BF. Two common-cost functions to quantify the quality
of the approximation are ℓ2 norm and KL divergence. Recently, the
Earth Mover's distance [15], which is more appropriate for the
realistic imagery, is also used to quantify the approximation. In
practice, we commonly have r⪡M and r⪡N. Thus, the low-rank
factorization essentially attempts to locate a compressed approx-
imation of original data space where each feature vector Xi is
approximated by a linear combination of the columns of B,
weighted by the components of F, as

Xi ¼ ∑
r

p ¼ 1
BpFpi: ð1Þ

Thus, B can be regarded as containing a set of basis vectors. Let
Fi ¼ ½F1i;…; Fri� denote the ith column of F where Fi is regarded as a
coding vector, or as a new data representation of the ith data point
with respect to the new basis, B. Based on the widely used ℓ2

norm, an objective function of low-rank matrix factorization is
formulated as

OMF ¼ jjX�BFjj2F : ð2Þ
Various researchers add the constraint, B40, F40, to the

objective function (2) for the desired properties, which results in
many variants of low-rank matrix factorization. Among many
variants, NMF and TSVD are two popular methods. NMF adds a
non-negative constraint to the factorized matrices B and F. This
leads to part-based data representation, which is useful for the
image signal, text, etc, because they are usually considered as low-
rank structures and can be represented as an additive combination
of few atom signals or sub-texts. Mathematically, the original NMF
framework is defined as the minimization problem,

min jjX�BFjj2F
s:t: BZ0; FZ0: ð3Þ
TSVD amounts to truncating the singular value expansion of X

in such a way that the smallest singular values are discarded. As an
alternative to SVD, TSVD has been widely applied to data analysis
tasks. For instance, the well known PCA is the TSVD method
applied to centered data. TSVD imposes a ortho-normal constraint
on the factorized matrix B, whose columns consist of a principal
orthogonal basis of data space. The original TSVD is defined as the
minimization problem

min jjX�BFjj2F
s:t: BTB¼ Ir : ð4Þ
For large scale data, iterative methods effectively address the

above mentioned two optimization problems. In actual practice,
various researchers improve the NMF and TSVD frameworks by
adding the regularization term. Sparseness is an important con-
straint. Among different sparseness constraints, one is selected as
the regularization term for incorporation into the NMF framework
to determine the better part-based representation of the data. In
particular, ℓ1 [4,5] and ℓ1=2 norm [6] constraints, respectively, are
incorporated into the original NMF framework. Chen et al. [7]
proposed a non-negative local coordinate factorization (i.e. a
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