
Iterative Nearest Neighbors

Radu Timofte a,b,n, Luc Van Gool a,b

a VISICS, ESAT-PSI/iMinds, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
b Computer Vision Lab, D-ITET, ETH Zurich, Sternwartstrasse 7, 8092 Zurich, Switzerland

a r t i c l e i n f o

Article history:
Received 5 May 2013
Received in revised form
6 June 2014
Accepted 10 July 2014
Available online 21 July 2014

Keywords:
Iterative Nearest Neighbors
Least squares
Sparse representation
Collaborative representation
Classification
Dimensionality reduction

a b s t r a c t

Representing data as a linear combination of a set of selected known samples is of interest for various
machine learning applications such as dimensionality reduction or classification. k-Nearest Neighbors
(k NN) and its variants are still among the best-known and most often used techniques. Some popular
richer representations are Sparse Representation (SR) based on solving an l1-regularized least squares
formulation, Collaborative Representation (CR) based on l2-regularized least squares, and Locally Linear
Embedding (LLE) based on an l1-constrained least squares problem. We propose a novel sparse
representation, the Iterative Nearest Neighbors (INN). It combines the power of SR and LLE with the
computational simplicity of k NN. We empirically validate our representation in terms of sparse support
signal recovery and compare with similar Matching Pursuit (MP) and Orthogonal Matching Pursuit
(OMP), two other iterative methods. We also test our method in terms of dimensionality reduction and
classification, using standard benchmarks for faces (AR), traffic signs (GTSRB), and objects (PASCAL VOC
2007). INN compares favorably to NN, MP, and OMP, and on par with CR and SR, while being orders of
magnitude faster than the latter. On the downside, INN does not scale well with higher dimensionalities
of the data.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is a common assumption that data has an intrinsic structure
which significantly influences the performance of the subsequent
applications using it. This is the case especially for classification
and dimensionality reduction.

Dimensionality reduction techniques set out to preserve or
enhance one or the other property under the reducing projection.
Some linear techniques are used for this: Principal Component
Analysis (PCA) [1] enhances the concentration of variance, Locality
Preserving Projection (LPP) [2] conserves the local affinities, Sparse
Representation Linear Projection (SRLP) [3] embeds a sparse
representation, and Linear Discriminant Analysis (LDA) [4,5] max-
imizes the inter-class vs. intra-class variance. Among the non-
linear techniques we have Locally Linear Embedding (LLE) [6]
which preserves the local neighborhood, Laplacian Eigenmaps (LE)
[7] and Supervised Laplacian Eigenmaps (SLE) [8] preserving the
distances to neighbors, and Sparse Representation Embedding
(SRE) [3] preserving the sparse representation.

For classification purposes we have to define those properties and
measures used to match a new sample or ‘query’ against the known,
labeled samples or the learned class model. Picking the label of the
nearest neighbor as the class label for the query is the simplest such
classification decision. ‘Nearest’ is defined on the basis of some
similarity, distance, or metric [9]. The Sparse Representation-based
Classifier (SRC) starts from the l1-regularized least squares decom-
position, a Sparse Representation (SR). The decision is based on the
class labels of the samples that contribute to the representation of the
query. SRC yields state-of-the-art performance in e.g. face recognition
[10]. The Collaborative Representation (CR) Classifier (CRC) [11] uses
instead the l2-regularized least squares decomposition.

Apart from the quality of the results, the computational
efficiency can be critical in practice. The high performance of SR
and CR comes at the price of a computational burden. k NN in
comparison is very fast, but less performant.

We aim at combining the high speed of k NN and the
performance of SR. Our proposed method is coined the Iterative
Nearest Neighbors (INN) representation and is inspired by feed-
back loop methods. First, INN searches for the nonzero terms in
the representation, instead of the weights like most current l1
solvers would. Each new selection of a sample in the representa-
tion is meant to compensate for the errors introduced by the
previous selections and, as a consequence, to further reduce the
residual between the query and its reconstruction. We have an
iterative procedure depicted in Fig. 1. Starting from the query
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sample, INN first gets its nearest neighbor from the training pool
of samples. In the next iterations, it each time picks the sample
best suited to reduce the residual between the query sample and
its reconstruction on the basis of the previously selected samples.
The reconstruction is obtained as a linear combination. This process
is repeated until a stopping criterion is met. This can be a maximum
number of iterations, a residual threshold, or when the sum of the
remaining weights in a potentially infinite representation gets too
small compared to the sum of the weights already assigned to
samples. We transform the selection of each new term into a NN
decision by adapting the query at each step by adding the weighted
residual introduced by the previous selection. This weight is the
regularization parameter of the method. As will become clear, the
monotonously increasing sum of the imposed weights in the
representation is guaranteed to have a limited value and after a
limited number of iterations, the remaining terms can be discarded
given an application-specific (error) tolerance to noise.

INN is an iterative procedure and its complexity is dominated
by the maximum number of iterations (nonzeros in the represen-
tation) � the time of the NN search. Experimentally, we found the
performance to be robust for a wide range of values for the
parameter regulating the importance of the residual introduced
by each newly picked NN. It is comparable to the Lagrangian
parameter used in l1 and l2-regularized least squares solvers.
Nevertheless, tuning the parameter for specific data usually still
brings some improvement (as with l1 and l2-solvers).

This paper is an extension of our previous work [12] which
introduced INN in its original form (in the sequel referred to as
INN0). We show INN0 to be a valid approach in cases with
moderate amounts of noise, and show that a proposed refinement
brings no significant advantages. Moreover, we also extend the
empirical validation of the method by comparing it against similar
greedy iterative recovery algorithms, i.e. Matching Pursuit (MP)
[13] and its variant Orthogonal Matching Pursuit (OMP) [14,15].

The rest of the paper is structured as follows. First, we review
and refine the Iterative Nearest Neighbors method in Section 2. We
emphasize similarities with other iterative methods by bench-
marking its performance and we provide an analysis of its
complexity, bounds, and approximations. Then, in Section 3 we
derive our INN-based variant of the SRLP dimensionality reduction
method, our INN-based Classifier, and INN-based variants for the
Naive Bayes classifier and the Sparse Coding Spatial Pyramid
Matching method. Section 4 experimentally validates the pro-
posed INN representation and its derived applications, using real-
life datasets. The conclusions are drawn in Section 5.

2. Iterative Nearest Neighbors

First we briefly review the main motivation and assumptions
we made, then we introduce our INN proposal and provide a
theoretical and empirical analysis.

2.1. Motivation and assumptions

We want to combine the speed and simplicity of kNN or MP
with the performance of SR or CR. This is our main motivation.
Regarding these properties, we make two observations. Firstly,
kNN and MP rely on nearest neighbors and this to a large extent
accounts for their speed. Secondly, SR solvers optimize over the
weights, and seem to draw much of their performance from the
fact that the main supporting samples in the SR representation
tend to belong to the data class/cluster of the input query. Thus,
we propose a method that combines these elements. Moreover,
we introduce a controlling parameter that allows our algorithm to
trade off performance for speed.

Three important design choices we make in defining our INN
representation are

(1) We try to ensure that the most important samples in the
representation are similar to the input query. This motivates the
use of nearest neighbor search as main operation and not a
regression involving scaling.

(2) We envisage a sequential selection process of the samples,
with their weights going down as the algorithm proceeds. We
will impose guiding weights for the representation and, with these
weights steadily decreasing, the importance of each subsequent
sample decreases. This said, a specific sample can be selected
multiple times, thus even if the weights are predefined discrete
values of a decreasing function, the actual weight of such repeat-
edly selected sample is the sum of the corresponding weights. As a
result, the first selected samples are not necessarily the ones with
the largest impact (cumulated weight) in the representation.

(3) We use a working query updated after each selection. The
update is an addition of the weighted residual between the
working query and the selected sample. In this way:

(i) the energy (i.e. the l2-norm) of the working query is slowly
changing,

(ii) the working query embeds the history of our selections,
(iii) the impact of the residual is controlled by a weighting

parameter, the same controlling the decay of the weights, and

Iteration # 1) 2) 3) 4) 5) 6) 7) 8)

Working query

Selected sample

Class of sample 4 4 4 37 4 4 27 43

Imposed weight 0.333 0.222 0.148 0.099 0.066 0.044 0.029 0.019

Reconstruction

Fig. 1. INN0 algorithm iteration by iteration. 8 iterations for λ¼0.5 and β¼0.95 (95%). At each iteration we show the working query, the selected NN sample from the training
pool, its class, the imposed weight, and the current reconstruction. The input query has a summed confidence of 0.813 to belong to class 4.

R. Timofte, L. Van Gool / Pattern Recognition 48 (2015) 60–72 61



Download English Version:

https://daneshyari.com/en/article/530269

Download Persian Version:

https://daneshyari.com/article/530269

Daneshyari.com

https://daneshyari.com/en/article/530269
https://daneshyari.com/article/530269
https://daneshyari.com

