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a b s t r a c t

Multiple instance learning (MIL) is concerned with learning from sets (bags) of objects (instances),
where the individual instance labels are ambiguous. In this setting, supervised learning cannot be
applied directly. Often, specialized MIL methods learn by making additional assumptions about the
relationship of the bag labels and instance labels. Such assumptions may fit a particular dataset, but do
not generalize to the whole range of MIL problems. Other MIL methods shift the focus of assumptions
from the labels to the overall (dis)similarity of bags, and therefore learn from bags directly. We propose
to represent each bag by a vector of its dissimilarities to other bags in the training set, and treat these
dissimilarities as a feature representation. We show several alternatives to define a dissimilarity
between bags and discuss which definitions are more suitable for particular MIL problems. The
experimental results show that the proposed approach is computationally inexpensive, yet very
competitive with state-of-the-art algorithms on a wide range of MIL datasets.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many pattern recognition problems deal with complex objects
that consist of parts: images displaying several objects, documents
with different paragraphs, proteins with various amino acid
subsequences. The success of supervised learning techniques
forces such complex objects to be represented as a single feature
vector. However, this reduction may cause important differences
between objects to be lost, degrading classification performance.
Rather than representing such a complex object by a single feature
vector, we can represent it by a set of feature vectors, as in
multiple instance, or multi-instance learning (MIL) [1]. For exam-
ple, an image can be represented as a bag of segments, where each
segment is represented by its own feature vector. This is a more
flexible representation that potentially can preserve more infor-
mation than a single feature vector representation.

In MIL terminology, an object is called a bag and its feature
vectors are called instances. MIL problems are often considered to
be two-class problems, i.e., a bag can belong either to the positive
or the negative class. During training, the bag labels are available,
but the labels of the instances are unknown. Often assumptions
are made about the instance labels and their relationship with the
bag labels. The standard assumption is that positive bags contain
at least one positive or concept instance, whereas negative bags

contain only negative, background instances [1,2]. An image
labeled as “tiger” would therefore contain a tiger in at least one
of its segments, whereas images with other labels would not
depict any tigers. Many MIL approaches therefore focus on using
the labeled bags to model the concept region in the instance space.
To classify a previously unseen bag, the instances are labeled
according to the best candidate model for the concept, and the bag
label is then obtained from these instance labels.

It has been pointed out [3] that although for many problems
the bag representation is useful, the assumptions on the bag and
instance labels typically do not fit the application. For instance, for
an image of the “desert” category, it would be wrong to say that
“sand” is the concept, if images of the “beach” category are also
present. Therefore, methods in which the standard assumption is
relaxed have emerged. In [4] an adaptive parameter is used to
determine the fraction of concept instances in positive bags.
Generalized MIL [5,6] examines the idea that there could be an
arbitrary number of concepts, where each concept has a rule of
how many (just one, several or a fraction) positive instances are
needed to satisfy each concept. A review of MIL assumptions can
be found in [7].

This line of thought can be extended further to cases where it is
difficult to define a concept or concepts, and where most, if not all,
instances, contribute to the bag label. The implicit assumption is
that bag labels can be related to distances between bags, or to
distances between bags and instances. Such approaches have used
bag distances [8], bag kernels [9], instance kernels [3] or dissim-
ilarities between bags [10–12].
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Bag-based approaches are attractive because they transform
the MIL dataset back to a standard feature vector representation
such that regular supervised classifiers can be used. Unfortunately,
some of the representational power of MIL can be lost when
converting a bag to a single feature vector of (dis)similarities. It has
indeed been pointed out that the definition of distance or
similarity can influence how well the representation is suited for
one or more concepts [7]. The question is how to do this in a way
that still preserves information about the class differences.
Furthermore, competing approaches offer a variety of definitions
of (dis)similarity, and it is not always clear which definition should
be preferred when a new type of MIL problem presents itself.

In this paper we propose a general MIL dissimilarity approach
called MInD (Multiple Instance Dissimilarity). We discuss several
ways in which dissimilarities between bags can be defined, show
which assumptions these definitions are implicitly making, and
hence which definitions are suitable for different types of MIL
problems. We have collected several examples of such problems in
a single repository online.1 Furthermore, we discuss why the
dissimilarity space is an attractive approach for MIL in general.
An important advantage is that there are no restrictions on the
dissimilarity measure (such as metricity or positive-definiteness).
This allows the use of expert-defined dissimilarities which often
violate these mathematical restrictions. Similarly, there is no
restriction on the classifier used in the dissimilarity space, which
is attractive for potential end-users faced with MIL problems, and
who already have experience with a certain supervised classifier.
Lastly, with a suitable choice of dissimilarity and classifier, the
approach is very computationally efficient, yet still provides
interpretable state-of-the-art results on many datasets. For exam-
ple, the average minimum distance between bags with a logistic
classifier achieves very good performances, is easy to implement,
and the classifier decisions can be explained in terms of dissim-
ilarities to the prototypes.

After a review of MIL approaches in Section 2, we propose
MInD in Section 3. In Section 4, we show some examples of MIL
problems and demonstrate which dissimilarities are most suitable
in each case. We then compare results to a range of MIL methods
in Section 5, and discuss practical issues of dissimilarities and
other bag-level methods in Section 6. A conclusion is given in
Section 7.

2. Review of MIL approaches

In multiple instance learning (MIL), an object is represented by
a bag Bi ¼ fxikjk¼ 1;…;nig �Rd of ni feature vectors or instances.
The training set T ¼ fðBi; yiÞji¼ 1;…Ng consists of positive
ðyi ¼ þ1Þ and negative ðyi ¼ �1Þ bags. We will also denote such
bags by Bþ

i and B�
i . The standard assumption for MIL is that there

are instance labels which relate to the bag labels as follows: a bag
is positive if and only if it contains at least one positive, or concept
instance [1].

Under this standard assumption, the strategy has been to
model the concept: a region in the feature space which contains
at least one instance from each positive bag, but no instances from
negative bags. The original class of MIL methods used an axis-
parallel hyper-rectangle (APR) [1] as a model for the concept, and
several search strategies involving such APRs have been proposed.

Diverse Density [2] is another approach for finding the concept in
instance space. For a given point t in this space, a measure DD(t) is
defined as the ratio between the number of positive bags which have
instances near t, and the distance of the negative instances to t. The

point of maximum Diverse Density should therefore correspond to
the target concept. The maximization problem does not have a closed
form solution and gradient ascent is used to find the maximum. The
search may therefore converge to a local optimum, and several
restarts are needed to find the best solution.

EM-DD [13] is an expectation-maximization algorithm that
refines Diverse Density. The instance labels are modeled by hidden
variables. After an initial guess for the concept t, the expectation
step selects the most positive instance from each bag according to
t. The maximization step then finds a new concept t0 by maximiz-
ing DD on the selected, most positive instances. The steps are
repeated until the algorithm converges.

Furthermore, several regular supervised classifiers have been
extended to work in the MIL setting. One example is mi-SVM [14],
an extension of support vector machines which attempts to find
hidden labels of the instances under constraints posed by the bag
labels. Another example is MILBoost [15], where the instances are
reweighted in each of the boosting rounds. The bag labels are
decided by applying a noisy OR [2] rule to the instance labels,
which reflects the standard assumption.

It has been recognized that the standard assumption might be
too strict for certain types of MIL problems. Therefore, relaxed
assumptions have emerged [5,6], where a fraction or a particular
number of positive instances are needed to satisfy a concept, and
where multiple concept regions are considered.

A similar notion is used in MILES [3], where multiple concepts,
as well as the so-called negative concepts (concepts that only
negative bags have) are allowed. All of the instances in the training
set are used as candidate concept targets, and each bag is
represented by its similarities to these instances. A sparse 1-
norm SVM is then used to simultaneously maximize the bag
margin, and select the most discriminative similarities, i.e.,
instances that are identified as positive or negative concepts.

A step further are methods that do not make explicit assump-
tions about the instances or the concepts, but only assume that
bags of the same class are somehow similar to each other, and
then learn from distances or similarities between bags. Such
methods include Citation-k NN [8], which is based on the Haus-
dorff distance between bags, bag kernels [9] and bag dissimila-
rities [10,16]. In [9], a bag kernel is defined either as a sum of the
instance kernels, or as a standard (linear or RBF kernel) on a
transformed, single instance representation of the bag. One
example is the Minimax representation, where each bag is
represented by the minimum and maximum feature values of its
instances.

Last but not least, a way to learn in MIL problems is to
propagate the bag labels to the instances, and use supervised
learners on these propagated labels. We call this approach Sim-
pleMIL. To obtain a bag label from predicted instance labels, the
instance labels have to be combined. Here, the noisy OR rule or
other combining methods can be used [17,18]. It has been
demonstrated that supervised methods can be quite effective in
dealing with MIL problems [19].

All MIL methods can be more globally summarized by the
representation that they use: the standard instance-vector-based
representation, a bag dissimilairity representation and a bag-
instance representation (see Fig. 1). The first representation is
the standard representation of MIL, where each bag consists of
several instances, and the dimensionality is equal to the dimen-
sionality of the instance space. In this example, there are two bags
which are represented in a 2D feature space. This is the repre-
sentation used by EM-DD, mi-SVM, MILBoost and SimpleMIL. The
representation on the top right is the bag representation, used by
Citation-k NN, bag kernels and our bag dissimilarity approach. The
representation in the bottom is the instance representation, used
by MILES. In the latter two representations, regular supervised1 http://www.miproblems.org
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