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a b s t r a c t

This paper presents a supervised learning algorithm for image deblurring. The task is addressed into the

conceptual framework of matrix regression and gradient evolution. Specifically, given pairs of blurred

image patches and their corresponding clear ones, an optimization framework of matrix regression is

proposed to learn a matrix mapping. For an image to be deblurred, the learned matrix mapping will be

employed to map each of its image patches directly to be a new one with more sharp details. The

mapped result is then analyzed in terms of edge profiles, and the image is finally deblurred in way of

gradient evolution. The algorithm is fast, and easy to be implemented. Comparative experiments on

diverse natural images and the applications to interactive deblurring of real-world out-of-focus images

illustrate the validity of our method.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Image deblurring is a classical problem that has been extensively
studied in the circles of image processing, computer graphics and
computer vision. Although great progresses have been achieved in
the past years [1–9], this task still remains far from being solved for
real-world applications. As an inverse problem, the main challenge
lies in that it is under-constrained since we need to restore the high
frequency (sharp) details from the ruined image. In the absence of
prior knowledge about the blurring mechanism, this brings intrinsic
ambiguity of modeling the blur function and restoring the needed
details.

The efforts in image deblurring have surged in recent decades,
with the development of numerous approaches and proposals for
real-world occasions. Most early methods rely on the deconvolution
tricks [10–12], such as Richardson–Lucy algorithm [13,14], Wiener
filtering, least-squares deconvolution [10], and so on. The main
shortcoming of deconvolution approaches lies in that the deblurring
quality largely depends on the kernel estimate. In addition, different
tools of mathematical analysis are also employed to deal with this
task, typically including wavelet [15,16], variational [17], and
regularization [18–22]. Along the line of deconvolution, some
approaches are formulated in terms of blind deconvolution, and
example methods can be found in [23–29,12,30]. In blind deconvo-
lution, it is not easy to estimate a proper kernel that is well suited to
the occasion.

Another family of deblurring algorithms have been developed,
explicitly or implicitly, with prior knowledge to help reduce the
degrees of freedom of the problem. Typically, natural image statis-
tics are used as prior knowledge to guide the deblurring [31–33,8].
Based on the fact that the statistics of derivative filters on images
may be significantly changed after blurring, Levin modeled the
expected ones as a function of the width of blur kernel [2]. Fergus
et al. proposed to recover the patch images by finding the values
with highest probability guided by a prior on the statistics [34],
which states that natural images obey heavy-tailed distributions of
image gradients. Along this line, approaches of modifying the
gradient fields have been proposed with gradient adaptive enhance-
ment [35], gradient penalty by a hyper-Laplacian distribution [36],
gradient projection [37], and so on. In addition, information related
to sparse representation [27,38,36], color statistics [39], and multi-
images [3,40], has also been used to improve the image quality.

The task of deblurring has also been addressed in view of statistic
inference or machine learning. A popular modeling tool is the
Bayesian framework [41,42,34,8]. Typically, Fergus et al. employed a
Bayesian approach to estimate the blur kernel implied by a distribu-
tion of probable images [34]. Bayesian framework has also been used
to find the most likely estimate of the sharp image [8]. Except the
Bayesian frameworks, Su et al. constructed a hybrid learning system,
in which both unsupervised and supervised learning methods are
employed to deblur images [43]. Later, based on a pair of blurred
images, Liu et al. proposed a non-blind deconvolution approach [3].
More recently, Kenig et al. proposed a subspace learning based
framework to model the space of point spread functions [44]. To this
end, they employed principal component analysis to learn the space
from examples at hand [44]. Then, a blind deconvolution algorithm
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is developed for new image to be deblurred. During each iteration of
blind deconvolution, a prior term is added to attract the desired
point spread function to the learned point spread function space.
The application of the proposed algorithm is demonstrated on three-
dimensional images acquired by a wide-field fluorescence micro-
scope, indicating its ability to generate restorations with high
quality.

In the literature, regression has been applied to image restora-
tion. Typically, Hammond and Simoncelli developed a general
framework for combination of two local denoising methods [45].
In their framework, a spatially varying decision function is employed
to balance the two methods. Fitting the needed decision function to
data is then treated as a regression problem. Kernel ridge regression
is finally used to achieve this goal [45].

Additionally, regression is also applied to image deblurring.
Takeda et al. derived a deblurring estimator [6] in terms of kernel
regression. By using the Taylor series, they implicitly assumed that
the regression function is a locally smooth function up to some order.
The locally weighted kernel regression is then employed to achieve
this goal. As a whole, the image to be resorted is ordered into a
column-stacked vector, and the optimization problem is constructed
by integrating together the regression representations of all the
pixels with matrix operator [6]. Formally, this will generate a large-
scale optimization problem for large image. In addition, although
kernel regression is used, their method is unsupervised as no
prediction function is learned from samples at hand for new images.

This paper presents a supervised learning algorithm for image
deblurring. Our algorithm is developed on the conceptual framework
of matrix regression and gradient evolution. To our best knowledge,
this is the first time that the conception of matrix regression (MR) is
presented for image deblurring. In this framework, we do not
estimate the blur kernel, but learn a matrix mapping to transform
image patches to be the desired ones. To this end, a supervised
learning algorithm of MR is proposed to learn the matrix mapping
from the given set including blurred image patches and their
corresponding clear ones. The learned matrix mapping will be used
to map its patches of the image to be deblurred. The mapped result
is then evolved in a gradient field constructed to enhance the edges
of the final image. Comparative experiments illustrate the efficiency
and effectiveness of the proposed method. Its applications to the
interactive deblurring of out-of-focus images also indicate the
validity of our method.

Specifically, the advantages or details of our method can be
highlighted as follows:

(1) Beyond blur identification and deconvolution used popularly
in existing deblurring algorithms, our algorithm is addressed
into the supervised learning framework, namely matrix
regression framework. Instead, the learned matrix mapping
is used to transform the blurred image patches.

(2) The MR algorithm is formulated as an optimization problem.
The optimum can be obtained within a few iterations. In each
iteration, only two groups of linear equations should be solved.
The scale of the linear equations is very small since it equals to
the size of the training patches. As a result, the optimization
problem can be efficiently solved.

(3) On the whole image level, the computational complexity of
transforming the blurred image with the learned matrix mapping
scales linearly in the number of image patches. Moreover, the
gradient evolution can be fulfilled via pixel-wise update. Thus,
the computational complexity is also linear in the number of
pixels. Low computational complexity and low memory require-
ment will facilitate its real-world applications of our method.

The remainder of this paper is organized as follows. In Section 2,
the MR framework is developed. Section 3 presents the gradient

evolution and describes the deblurring algorithm. Section 4 reports
the experimental results. Section 5 demonstrates the applications
to interactive deblurring of real-world out-of-focus images. Conclu-
sions will be drawn in Section 6.

2. Matrix regression

2.1. Problem formulation

Generally, the image blurring model can be formulated as
follows:

G¼ fnIþn, ð1Þ

where I is the imaged objects, f denotes the imaging system, G is
the acquired image, n stands for the pixelwise additive noise, and
‘‘n’’ is a convolution operator. In real world situations, blur often
comes from two types: out-of-focus lens or motion. For example, f

is usually assumed to be a Gaussian point spread function for
deblurring out-of-focus images. Here our task is to restore I from G.

As an inverse problem, the task is under-constrained as f is
unknown. This includes two cases. One is that the type of the
kernel is known, while its size and element values are unknown.
Another is that the type, size and element values are all unknown.
Actually, there are many possible solutions to problem (1). Thus,
employing prior knowledge about the blur kernel is fundamen-
tally necessary to help constrain the solution to the desired
images.

Algorithmically, most existing approaches solve problem (1)
with tricks of deconvolution or blind deconvolution, in which a
blur kernel is estimated. Differently, we address this task into the
framework of supervised learning in terms of matrix regression.

As a supervised learning problem, now the task can be
formulated as follows. Suppose we are given N blurred image
patches in X ¼ fAig

N
i ¼ 1 �Rm�n and their corresponding clear

patches in Y ¼ fBig
N
i ¼ 1 �Rm�n, our goal is to find a matrix mapping

B¼ LAR, ð2Þ

such that for each patch we have

Bi ¼ LAiRþn, i¼ 1;2, . . . ,N: ð3Þ

where A and B are two m�n matrices, nARm�n is a difference term
(related to model errors or noises), L is an m�m matrix and R is an
n�n matrix.

The motivation behind the use of the mapping in (2) can be
explained as follows. Intrinsically, as a bilinear mapping, (2) can
be viewed as a combination of row deblurring and column
deblurring. As a whole, a linear restoration of patch A is achieved
since B is a linear function of all of the elements in A. In addition,
beyond converting patches A and B into two column-stacked
vectors aARmn and bARmn respectively, directly employing
matrix mapping can facilitate the computation. For example,
suppose the size of the blur kernel (2D filter) is 41�41. Then,
totally there are 1681 coefficients in b¼wT a to be solved.
To accurately estimate w, one needs to prepare at least 1681
pairs of samples in X and Y (that is, NZ1681). Otherwise, we will
obtain an under-determined problem. In contrast, with matrix
mapping, 41 pairs of training samples could be enough to learn
the matrix mapping (see Eqs. (8) and (10) in Section 2.2).

2.2. Matrix regression

To learn L and R in (2) from the N pairs of image patches in X
and Y, we employ the criterion of Bayesian maximum a posteriori
estimation. Under the Gaussian noise assumption, this turns out
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