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a b s t r a c t

A recently proposed Bayesian modeling framework for classification facilitates both the analysis and

optimization of error estimation performance. The Bayesian error estimator is then defined to have

optimal mean-square error performance, but in many situations closed-form representations are

unavailable and approximations may not be feasible. To address this, we present a method to optimally

calibrate arbitrary error estimators for minimum mean-square error performance within a supposed

Bayesian framework. Assuming a fixed sample size, classification rule and error estimation rule, as well

as a fixed Bayesian model, the calibration is done by first computing a calibration function that maps

error estimates to their optimally calibrated values off-line. Once found, this calibration function may

be easily applied to error estimates on the fly whenever the assumptions apply. We demonstrate that

calibrated error estimators offer significant improvement in performance relative to classical error

estimators under Bayesian models with both linear and non-linear classification rules.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

When a large sample is available, classification and error
estimation are easy because the data may be partitioned into
training and testing datasets without significantly degrading the
quality of the classifier or the accuracy of the error estimator. In
biomedicine and other applications restricted to a small-sample
setting, classifier error estimation is a critical issue since it is the
primary measure of the scientific validity of a designed classifier
and small-sample error estimation is problematic. To address the
issue, a recently proposed Bayesian framework for classification
defines a mathematical foundation for both the analysis and
optimization of error estimation schemes. In essence, the Bayesian
framework parameterizes the underlying feature-label distribu-
tion and assigns prior distributions to these parameters. Given a
sample, priors are updated to posterior distributions over the
model parameters, which quantifies our knowledge of the fea-
ture-label distribution from the prior and sample. Within this
framework, Bayesian error estimators are defined to have optimal
performance for a fixed sample and designed classifier relative to
the posterior distributions. Performance is measured with respect

to the mean-square error (MSE), which is the expected squared
deviation from the true error, or the root-mean-square (RMS),
which is the square root of the MSE. Analytical solutions for
Bayesian error estimators have been provided for two cases:
discrete distributions with Dirichlet priors and arbitrary classifi-
cation (henceforth referred to as the discrete model) [1] and
Gaussian distributions with normal-inverse-Wishart priors and
linear classification (the Gaussian model) [2].

When it is reasonable to assume a Bayesian framework but an
analytical or closed-form Bayesian error estimator is not avail-
able, it may be approximated using Monte–Carlo methods. For
instance, source code for Gaussian models with non-linear classi-
fication is available in [3]. That being said, approximating a
Bayesian error estimator is much more computationally intensive
than classical counting methods and may be infeasible. To
address this, we propose a new method of optimally calibrating
arbitrary error estimators within Bayesian frameworks. Assuming
a fixed sample size, fixed classification and error estimation
schemes, and a set of priors for the distribution parameters, this
is done in two steps. First, we compute a calibration function
mapping error estimates (from the specified error estimation
rule) to their calibrated values off-line according to the assumed
model. Second, in all future experiments a practitioner may
perform classification and error estimation in the usual way, but
at the last step use the calibration function as a simple lookup
table to calibrate the final error estimate on the fly.
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The calibration function is defined to be the minimum mean-
square error (MMSE) estimate of the true error of a classifier
designed from the assumed classification scheme, given an
observed error estimate. Equivalently, this is the expected true
error conditioned on the observed error estimate, where uncer-
tainty in the expectation stems from our uncertainty in both the
feature-label distribution and the sample. This is similar to
Bayesian MMSE error estimation itself, which is equivalent to
the expected true error of a designed classifier conditioned on the
entire observed sample, except that the calibrated error estimator
conditions on only the observed error estimate. In other words,
both error estimators minimize MSE in the same assumed
Bayesian model, but the Bayesian error estimator has the benefit
of the entire sample, which is an array of n sample points with
D features each, and the MMSE calibrated error estimator uses
only a single statistic (a lossy function of the observed sample)
containing information about the true error. Also, a basic property
of both Bayesian and calibrated error estimators is that they are
unbiased relative to the true error. However, since the MMSE
calibrated error estimate averages true errors over all samples
producing the observed error estimate, the sample and classifier
are not fixed as they are in Bayesian error estimation, where
conditioning is on the sample itself.

Classical error estimation analyses evaluate performance over
a sampling distribution for a fixed feature-label distribution,
which is typically unknown in practice. There, the joint density
between true and estimated errors contains the full information
about performance, though only a few cases have been solved
analytically. For linear-discriminant analysis (LDA), exact joint
distributions have been found for both resubstitution and leave-
one-out in fixed univariate Gaussian models, and approximate
joint distributions are also available in fixed multivariate models
with a common known covariance matrix [4]. In contrast, a
Bayesian framework considers performance over an entire family
of feature-label distributions, where uncertainty in the true
distribution is conditioned precisely on the observed data avail-
able in hand. Hence, the calibration scheme proposed here stands
out as a method to optimally calibrate classical error estimation
schemes, not for a fixed distribution but over all distributions in
an uncertainty class, with a higher weight assigned to distribu-
tions that are more probable given the observed error estimate.

Related work by Xu et al. [5] considers the expected true error
conditioned on an error estimate when the feature-label distribu-
tion is modeled as Gaussian or mixed-Gaussian with fixed means
and scalable covariance matrices. There, the Bayes error of a
feature-label distribution is assigned a beta prior scaled between
0 and 0.25, indirectly corresponding to a distribution on the scale
for the covariances used in the model. Here, we place prior
distributions directly on parameters of the feature-label distribu-
tion itself, which is a more fundamental state of nature in the
problem. Furthermore, the Bayesian framework utilized here is
founded on deeper theory, including analytical representations of
the MSE performance for arbitrary error estimators conditioned
on the sample and the consistency of Bayesian error estimation in
both the discrete and Gaussian models [6].

2. Review of Bayesian error estimation

Consider a binary classification problem with class labels 0 and 1,
and a sample, Sn, with n sample points in a sample space X . Let n0

and n1 denote the number of sample points in class 0 and class 1,
respectively. The observed sample is used to train a classifier,
cn : X-f0;1g. The true error of cn can be decomposed as,

en ¼ ce0
nþð1�cÞe1

n, ð1Þ

where c is the a priori probability that a sample point is from class 0,
e0 is the probability that the classifier mislabels a class 0 point, and
e1 is the probability that the classifier mislabels a class 1 point.

In practice, the feature-label distribution is unknown, so that
the true error must be estimated via error estimation rules.
Classical training data error estimation methods, such as cross-
validation [7,8] and bootstrap [9,10], are typically counting
methods that are ‘‘model-free’’, in the sense that their evaluation
does not utilize modeling assumptions. Bolstered error estima-
tion [11] is a smoothed counting method which associates a
bolstering kernel with each sample point to spread its mass so
that each point contributes to the bolstered error estimate based
on its distance from the classifier decision boundary. Bayesian
error estimation is distinct because it uses modeling assumptions
in a Bayesian framework to quantify the uncertainty in our
knowledge of the feature-label distribution parameters. Denoting
the parameters of class yAf0;1g by yy and the corresponding
class-conditional distribution by f y

yy
, the feature-label distribution

is completely characterized by y¼ ½c,y0,y1�. In particular, the true
error of cn can be written as,

enðyÞ ¼ ce0
nðy0Þþð1�cÞe1

nðy1Þ, ð2Þ

where we have explicitly indicated the dependence of en and ey
n

on the distribution parameters (dependence on the sample/
classifier will be suppressed in en, ey

n and all other related terms).
To simplify the analysis, we assume c, y0 and y1 are indepen-

dent prior to observing the data, and denote their marginal priors
by pðy0Þ, pðy1Þ and pðcÞ. After observing the sample, independence
is preserved and the sample is used to update the priors to
posteriors, pnðy0Þ, pnðy1Þ and pnðcÞ. For instance, given a uniform
prior on c from 0 to 1, it can be shown that

pnðcÞ ¼
ðnþ1Þ!

n0!n1!
cn0 ð1�cÞn1 , ð3Þ

Epn ½c� ¼
n0þ1

nþ2
, ð4Þ

where Epn is shorthand notation for the expectation given the
sample, or equivalently, the expectation relative to the posterior
uncertainty in the relevant feature-label distribution parameters.
A more general class of priors on c is considered in [1]. In addition,
we may write the posterior distributions for yy by

pnðyyÞppðyyÞ
Yny

i ¼ 1

f y
yy
ðxy

i Þ, ð5Þ

where xy
i is the ith sample point in class y and the constant of

proportionality is found by normalizing the integral of pnðyyÞ to 1.
When the prior density is proper, this follows from Bayes’ rule
and if pðyyÞ is improper this is taken as a definition, but in all
cases it is mandatory that pnðyyÞ be a proper density.

Under weak regularity assumptions it is well known that the
MMSE estimator of a random variable is equivalent to its condi-
tional expectation given the observations. Hence, given an
observed sample, Sn, and a fixed classifier, cn, the Bayesian error
estimator, defined to be the MMSE estimate of the true error, is
the expected true error conditioned on the sample

beMMSE ¼ Epn ½en yð Þ� ¼ Epn ½c�be0
þð1�Epn ½c�Þbe1

, ð6Þ

where we have used the posterior independence between y0, y1

and c, and we define bey
¼ Epn ½ey

nðyyÞ�. When the prior probabilities
are improper, this is called the generalized Bayesian error esti-
mator. Note that this is a training data error estimator, meaning
that no sample points are held out for error estimation and the
entire sample set is used to update the priors and estimate the
true error.
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