
Realistic action recognition via sparsely-constructed
Gaussian processes

Li Liu a,b, Ling Shao a,b,n, Feng Zheng b, Xuelong Li c

a College of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, PR China
b Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD, UK
c State Key Laboratory of Transient Optics and Photonics, XIOPM, Chinese Academy of Sciences, Xi'an 710119, PR China

a r t i c l e i n f o

Article history:
Received 6 February 2014
Received in revised form
31 May 2014
Accepted 4 July 2014
Available online 14 July 2014

Keywords:
Action recognition
Gaussian processes
ℓ1 construction
Local approximation

a b s t r a c t

Realistic action recognition has been one of the most challenging research topics in computer vision. The
existing methods are commonly based on non-probabilistic classification, predicting category labels but
not providing an estimation of uncertainty. In this paper, we propose a probabilistic framework using
Gaussian processes (GPs), which can tackle regression problems with explicit uncertain models, for
action recognition. A major challenge for GPs when applied to large-scale realistic data is that a large
covariance matrix needs to be inverted during inference. Additionally, from the manifold perspective,
the intrinsic structure of the data space is only constrained by a local neighborhood and data
relationships with far-distance usually can be ignored. Thus, we design our GPs covariance matrix via
the proposed ℓ1 construction and a local approximation (LA) covariance weight updating method, which
are demonstrated to be robust to data noise, automatically sparse and adaptive to the neighborhood.
Extensive experiments on four realistic datasets, i.e., UCF YouTube, UCF Sports, Hollywood2 and
HMDB51, show the competitive results of ℓ1-GPs compared with state-of-the-art methods on action
recognition tasks.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Human action recognition, nowadays, attracts increasing atten-
tion and plays a significant role in various applications, e.g.,
human–computer interaction, human behavior analysis and video
surveillance systems. Traditional action recognition is usually
studied with constrained lab settings and a small data set, which
assumes that the start and the end of each action are known. It still
remains a challenging task for recognizing actions in real-world
videos. The wide variety of scene categories, variations in lighting,
different view angles and complex backgrounds all lead to obsta-
cles in robust action recognition.

Conventional action recognition approaches are based on
hand-crafted features, either global [1] or local [2]. The recent
trend is to extract more robust and/or discriminative features
through advanced machine learning or profound human knowl-
edge. For example, Le et al. [3] develop an unsupervised deep-
learned network to extract the most discriminant features, instead
of focusing on using hand-designed local features, such as SIFT or
HOG. A similar spatio-temporal feature learning method by

convolutional deep net has been proposed by Taylor et al. [4].
Sapienza et al. [5] learn discriminative action subvolumes in a
weakly supervised setting. The bag-of-words (BoW) scheme is
then followed to represent each action clip. Gilbert et al. [6] use
mined hierarchical compound features, which are formed from
simple 2D Harris corners. Liu et al. [7] extract action features based
on boosted key-frame selection and correlated pyramidal motion
feature representations. The AdaBoost learning algorithm is
applied to select the most discriminative frames from a large
feature pool. In this way, they obtain the top-ranked boosted
frames of each video sequence as the key frames which carry the
most representative motion information. Moreover, via observing
the characteristics of action sequences and studying various
existing spatio-temporal descriptors, Wang et al. [8] tailor design
the dense trajectory features (DTF), which are formed by the
sequence of displacement vectors in trajectory, together with a
HOG/HOF descriptor and the motion boundary histogram (MBH)
descriptor computed over a local neighborhood along the trajec-
tory. This method is demonstrated to achieve state-of-the-art
performance for action recognition.

However, current methods still have the following drawbacks:
(1) it is difficult to extract very effective low-level features for a
variety of actions; (2) typical methods are not explicitly probabil-
istic, which makes them inappropriate and unfit for providing an
estimation of uncertainty at the inference stage; (3) real-world
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action recognition always leads to high computational complexity
particularly for some kernel-based machine learning techniques.
To overcome these shortcomings, in this work, we introduce a
probabilistic framework which effectively combines the Gaussian
processes (GPs) regression with sparse ℓ1 covariance matrix
construction for realistic action recognition. Compared with other
methods, the GPs-related model is often preferred than SVM in
determining the hyper-parameters via evidence maximization and
can also provide probabilistic predictions, which is a highly
significant property for action recognition in a real and complex
background.

GPs [9] have been used for regression tasks in supervised
learning systems and applied over a range of applications includ-
ing data mining, robotics, etc. Generally, a Gaussian process is
defined as a probability distribution over a function y(x) which is
evaluated at an arbitrary set of points with a joint Gaussian
distribution. In a wide sense of the world, a stochastic process
y(x) is specified by giving the joint probability distribution for any
finite set of values in a consistent manner. A key point of Gaussian
stochastic processes is that the joint distribution over variables is
specified completely by the second-order statistics, namely the
mean and the covariance [10]. In most applications, we will not
have any prior knowledge about the mean of y(x) and so by
symmetry we take it to be zero. Therefore, the specification of the
Gaussian process is then completed by giving the covariance of y
(x) evaluated at any two values of x. The relevant kernel function is
given by

E½yðxÞ; yðx0Þ� ¼ kðx; x0Þ ð1Þ
In practice, however, GPs have limited applications in large-

scale computer vision tasks due to the fact that modeling big
training data with stochastic processes is still challenging. This is
because inverting a potentially large covariance matrix is compu-
tationally expensive during the inference time of GPs. For pro-
blems with thousands of observations, a precise inference for
conventional GPs becomes intractable and requires approxima-
tion. Most previous works based on sparse approximation apply a
subset of samples to approximate the posterior distribution for
new test samples. These sparse approximation algorithms either
rely on the elicitation method to select the subset samples [11] or
use obtained pseudo targets during the optimization of log-
marginal likelihood of the model [12].

On the other hand, the high complexity problem can be tackled
in a different way. Melkumyan and Ramoos [13] proposed a new
covariance function which provides intrinsically sparse covariance

matrices, instead of applying any sparse approximation. In addi-
tion, Ranganathan and Yang [14] also developed a new Gaussian
process (GP) regression algorithm, called online sparse matrix
Gaussian process (OSMGP) regression, which is exact and allows
fast online updates in linear time for covariance functions with
local supports. These sparse covariance matrices for GPs are
always manually constructed via a k-nearest neighbors constraint,
in which the samples xi and xj are considered as neighbors if and
only if xi is among the k nearest neighbors of xj or xj is among the k
nearest neighbors of xi. k is a positive integer and the similarity
between two data samples is commonly measured by the heat
kernel formulated as follows:

Kij ¼
e�‖xi �xj‖2=p if xi and xj neighbors;
0 otherwise

(
ð2Þ

where Kij is the covariance matrix element in position (i,j), p is the
heat kernel parameter and Jxi�xj J is always measured by the
Euclidean distance, which is the pairwise relationship and sensi-
tive to data noise. However, this kind of construction is sensitive to
data noise and one noisy feature may dramatically change the
data's relationship. Furthermore, when data's distribution is not
even, these pairwise-distance based kernels may also involve the
far-distance inhomogeneous data together, if the k is large.
Besides, the local linear embedding (LLE) proposed by Roweis
et al. [15] is also used for sparse matrix construction. The main
idea is to reconstruct a sample from its neighboring points and
minimize the reconstruction error by the ℓ2-norm:

min∑
i
Jxi�∑

j
αijxj J2; s:t: ∑

j
αij ¼ 1; 8 i ð3Þ

where αij¼0 if samples xi and xj are not neighbors. Nevertheless,
this kind of sparse embedding is still suffering the noise on
Euclidean distance.

Therefore, in our work we use the ℓ1-norm constraint to
construct the sparse covariance matrix as shown in Fig. 1, which
measures the overall data's relationship, instead of employing the
pairwise Euclidean distance as in conventional methods. ℓ1 con-
struction has been utilized for spectral clustering [16], subspace
learning, semi-supervised learning [17], etc., showing its discrimina-
tive advantages for kernel learning approaches: (1) great robustness
to data noise, (2) automatic sparsity instead of manual setting, and
(3) adaptive neighborhood for each individual data point. We have
successfully constructed the ℓ1 covariance matrix for GPs in our
action recognition tasks. The results in Section 3.2 show its sig-
nificant superiority over baseline and state-of-the-art methods.

Fig. 1. The left shows data distribution in the original space. From the manifold perspective, the intrinsic structure of data should only be constrained in a local neighborhood
(e.g., x1 and x3 and the corresponding black circle illustrate the neighborhood of x1), and the relationship of data between two distant points in the original feature space
should be ignored (e.g., x1 and x2). The right figure illustrates the proposed sparse ℓ1 covariance matrix, where the self-similarity has the highest covariance values (i.e.,
diagonal) and the covariance value between two distant points is zero (e.g., x1 and x2).
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