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Multiset canonical correlation analysis (MCCA) is a powerful technique for analyzing linear correlations
among multiple representation data. However, it usually fails to discover the intrinsic geometrical and
discriminating structure of multiple data spaces in real-world applications. In this paper, we thus
propose a novel algorithm, called graph regularized multiset canonical correlations (GrMCCs), which
explicitly considers both discriminative and intrinsic geometrical structure in multiple representation
data. GrMCC not only maximizes between-set cumulative correlations, but also minimizes local
intraclass scatter and simultaneously maximizes local interclass separability by using the nearest
neighbor graphs on within-set data. Thus, it can leverage the power of both MCCA and discriminative
graph Laplacian regularization. Extensive experimental results on the AR, CMU PIE, Yale-B, AT&T, and
ETH-80 datasets show that GrMCC has more discriminating power and can provide encouraging
recognition results in contrast with the state-of-the-art algorithms.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The techniques for joint feature extraction have become pop-
ular in recent years for multiple representation data. In many
real-world applications in pattern recognition, computer vision,
and data visualization, the same objects are usually represented in
multiple high-dimensional feature spaces, for example, genes
represented by genetic activity feature and text information
feature [1], speakers represented by audio feature and visual
feature [2]. Since high dimensionality obviously increases the
space-time requirements and intractability for processing the data
and various feature representations may have very different
statistical properties, how to learn meaningful low-dimensional
representations from multiple high-dimensional representations
is a challenging problem.

Currently, researchers have developed many useful feature
extraction or dimensionality reduction techniques for multi-
representation data. Among all the methods, canonical correlation
analysis (CCA) [3] is undoubtedly the most widely used one for
feature extraction and fusion by analyzing linear correlations
between two sets of features. In image recognition, Sun et al. [4]
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employed CCA to first extract low-dimensional correlation features
from two representations and then fused them by given strategies
for classification tasks. From the viewpoint of regression, Foster
et al. [5] performed CCA to derive two sets of low dimensional
embeddings and compute the regression function based on these
embeddings. However, standard CCA is a linear unsupervised
subspace learning method, and thus it is difficult to preserve the
discriminative information of data in canonical subspaces. To solve
this issue, Sun et al. [6] proposed a discriminant CCA (DCCA) by
using within-class and between-class information of training
samples. The extracted features are more discriminative for
classification tasks. From the point of view of nonlinearity, kernel
CCA (KCCA) [7] and locality preserving CCA (LPCCA) [8] were
proposed to capture nonlinear correlations between two sets of
data. This consideration of the nonlinearity makes KCCA and
LPCCA more powerful than CCA for joint feature extraction.
Moreover, some other variants of CCA can be found in [9-12].
Recently, a CCA-related method [13], i.e., partial least squares
(PLS), was also presented for joint feature extraction from two
different representations in face recognition. The PLS-based
method can simultaneously project samples into two low-
dimensional subspaces, where samples from one representation
as regressor and one from the other representation as response. In
addition, Sharma et al. [14] presented a general feature extraction
framework called generalized multiview analysis (GMA) for two-
set high-dimensional data, which can subsume a number of
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representative dimensionality reduction methods as its special
cases, for instance, CCA and PLS. Meanwhile, Sharma et al. [ 14] also
gave an extension of GMA for more than two sets of data.
However, the GMA's extension has many parameters,' especially
when the number of feature representations is very large. This
may result in higher computational costs for searching the optimal
parameters in numerous real-world applications. In multi-label
learning, Yu et al. [15] proposed a multi-output regularized feature
projection (MORP) method for dimensionality reduction of multi-
label data, in which one view (representation) is derived from the
input features and the other view is derived from the output data
(i.e., class labels). MORP obtains a low-dimensional feature space
that captures both the information of the original feature space
and the label space.

However, most of the foregoing methods work well only on
two sets of data. When multiple feature representations (at least
three ones) arise, they are neither efficient nor optimal for
classification tasks [16]. To solve this problem, the idea of multiset
canonical correlation analysis (MCCA) [17] has been introduced for
joint feature extraction on multiple representation data. MCCA, a
generalized extension of CCA, is usually used to reveal linear
correlations among more (than two) sets of variables by projecting
all sets of variables into respective canonical subspaces. Yuan et al.
[18] applied the generalized correlation coefficient to propose a
multiset integrated canonical correlation analysis (MICCA) frame-
work. This method projects multiple high-dimensional represen-
tations in parallel into respective low-dimensional subspaces, in
which multiple sets of features are fused to form effective feature
vectors for recognition. As the lacking of discriminant, a discrimi-
native version of MICCA [19] was proposed by using the within-
class information of training samples. Hou et al. [20] proposed a
novel method called multiple component analysis (MCA) for
multi-representation data, which first performs joint feature
extraction by a higher-order covariance tensor and then learns
orthogonal subspaces through higher-order singular value decom-
position (HOSVD) [21] for image recognition tasks.

Different with correlation analysis-based methods, Xia et al.
[22] developed a new spectral embedding approach, called multi-
view spectral embedding (MSE), which can learn a consensus low-
dimensional embedding for multiple feature representations.
Since the feature mapping from multiple high-dimensional feature
spaces to the low-dimensional subspace is implicit in MSE, it will
unavoidably suffer from an out-of-sample problem in pattern
classification tasks. That is, it is unclear how to project a new test
sample into the low-dimensional subspace. Subsequently, Kan
et al. [16] proposed a multiview discriminant analysis (MvDA)
approach by simultaneously maximizing between-class variations
and minimizing within-class variations of the projected data for
robust object recognition. Moreover, some other dimensionality
reduction methods [23-27] have also been presented for multi-
representation data.

Recently, many studies [28-32] have shown that considering
the intrinsic geometrical structure hidden in data can significantly
enhance the learning performance of dimensionality reduction
methods. In particular, the framework of graph embedding [33]
can provide a unified view for a broad set of such algorithms, such
as locality preserving projections (LPP) [28,29], Laplacian eigen-
map (LE) [30], locally linear embedding (LLE) [31], and isometric
feature mapping (ISOMAP) [32]. In other words, these methods
can be incorporated into a graph-based learning framework.
Motivated by recent progress in correlation analysis and graph
embedding, in this paper we propose a novel algorithm for joint

U If there are m feature representations, then the number of parameters is
(m—1)(m+4)/2.

feature extraction, called graph regularized multiset canonical
correlations (GriMCCs), which explicitly considers both discrimi-
native and intrinsic geometrical structure in multiple representa-
tion data. GrMCC not only maximizes between-set cumulative
correlations, but also minimizes local intraclass scatter and simul-
taneously maximizes local interclass separability by using the
nearest neighbor graphs on within-set data. Thus, it can leverage
the power of both MCCA and discriminative graph Laplacian
regularization. Extensive experimental results on five benchmark
datasets demonstrate that GrMCC can provide encouraging
performance improvements compared with KCCA, MCA, MCCA,
MICCA, and baseline algorithms PCA and CCA.

2. Background and related work

The work most related to our proposed method is CCA, MCCA,
and graph embedding. Therefore, in this section, we provide a
brief description for them.

2.1. Canonical correlation analysis

In CCA, given two zero-mean random vectors x e R” and y € RY,
the objective of CCA is to compute a pair of projection directions,
aeRP and g € RY, such that the correlation of canonical variates a'x
and g7y is maximized by

E(a"xy"p) _ aTSxyﬁ
\/E(aTXXTa) “E(BTyyTB) \/aTSXXa -ﬂTSyyﬁ

where E(-) denotes the expectation, Sy, and S,, are respectively,
within-set covariance matrices of vectors x and y, and Sy is a
between-set covariance matrix between vectors x and y. Clearly,
the canonical correlation criterion in (1) is affine-invariant to the
arbitrary scaling of « and p. According to this characteristic, CCA
needs to normalize the canonical transformations « and g by
setting

p((l, ﬂ): (1)

al Syxa=1 ﬂTSyy[i =1. 2)

On the foregoing basis, the first pair of projection directions, a;
and p; are computed by maximizing the criterion (1) with
constraints (2). After this, the kth pair of projection directions, oy
and p,, where 2 <k <r and r =rank(Syy), are found by continually
maximizing the criterion (1) with the following constraints:

alSya=1, ﬂTSyy/} =1,
ASea=0, ISyp=0, (G=1,2, - k-1 3)

2.2. Multiset canonical correlation analysis

MCCA is an important technique which can analyze linear
relationships between multiple sets of random variables. At pre-
sent, MCCA has many different forms [17]. Thereinto, the following
form (i.e., standard MCCA) is a natural and direct extension of CCA.

Given m sets of zero-mean random vectors {x; € R%}"_,, a set of
projection directions {a; € Rd*'},f”: 1, called multiset canonical trans-
formations (MCTs), is found to maximize the sum of pair-wise
correlations between multiset canonical variates (MCVs) {afx;}7"_;
as

r@= X 3 ai Sijag 4)
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where @ = (a, ab, ..., al}), S;i is the within-set covariance matrix
of vector x;, and S;(i#j) is the between-set covariance matrix
between vectors x; and x;.
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