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a b s t r a c t

Methods for tackling classification problems usually maximize prediction accuracy. However some
applications require maximum predictive value instead. That is, the designer hopes to predict one of the
classes with maximum precision, and is less concerned about the others. Some techniques exist for fine-
tuning a model's predictive value, but there seems to be a shortage of methods to generate maximum-
predictive-value classifiers. We propose a method using a nearest-prototype-style classifier optimized by
a genetic algorithm. We test its performance using 13 publicly available data sets from the life sciences.
The method generally gives more effective high-predictive-value models than standard classification
methods optimized for predictive value.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Accuracy, predictive value, and true positive rate

In most classification problems, the goal is to generate class
predictions with the highest possible accuracy. Designers develop
models to predict class, and would like to be reasonably sure that
those predictions are correct – whatever class they may be. There
are a variety of learning methods available for training high-
accuracy models (e.g. generalized linear model methods, decision
trees, support vector machines) and data science provides some
good guidelines and techniques for the successful application of
these methods.

However in some cases high accuracy (defined as the fraction of all
predictions which are correct) is not actually the goal. In some
applications, the top priority may be to ensure that a certain class
prediction is nearly never wrong. The example application which
inspired this work is in an adolescent idiopathic scoliosis clinic.
Idiopathic scoliosis is a spinal deformity affecting 2–3% of adolescents
[1]. Patients are monitored closely (by x-ray examination) during
their growth to check for “progression” (worsening) of the deformity.
Most of these examinations show no change in the deformity
since the previous examination – which is frustrating, because the
x-ray exposed the child to harmful radiation but revealed no new

information. Cumulative x-ray exposure is associated with increased
cancer risk for these children [2], and a model to identify these
“unchanged” cases using non-radiographic features could reduce
unnecessary radiation exposure.

This situation presents an interesting classification problem.
Since the current practice is to x-ray all patients at every visit, the
number of unnecessary x-rays which the model can identify is not
the major design consideration: any number of saved x-rays would
be an improvement on the current situation, and this improve-
ment would come at almost no cost if the model uses already-
collected measurements as inputs. Instead the major consideration
is the model's precision: when it predicts an “unchanged” case, it
must (nearly) never be wrong. This is because omitting an x-ray
when a change has occurred would mean a missed treatment
opportunity. Physicians would only accept the model if its
“unchanged” predictions could be trusted completely. In statistical
terms, the model must have a high (100%, if possible) predictive
value in predicting “unchanged” cases. The sensitivity to these
cases should also be maximized, but only as a secondary objective
to predictive value.

Standard modeling approaches are ineffective in this situation,
as they generally seek to maximize predictive accuracy (by mini-
mizing error probability, maximizing likelihood functions, etc.)
This is inappropriate in situations like our scoliosis example.
Instead the modeling process must sacrifice accuracy for predic-
tive value. Maximizing predictive value can be difficult, and there
seems to be a shortage of tools for doing it.

In this paper wewill consider a requirement for maximum positive
predictive value (PPV), though the -discussion applies equally to
maximizing negative predictive value. The PPV (also called “precision”)
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is the fraction of a model's “positive” predictions which are actually
correct [3]:

PPV¼ TP
TPþFP

¼ True positives
Predicted positives

ð1Þ

Here TP is the number of true positive and FP the number of false
positive predictions produced by the model. In the scoliosis example,
a true positive could be an “unchanged” case which is correctly
identified, while a false positive would be a “change” case erroneously
predicted as “unchanged”. A PPV of 100% is achieved by eliminating all
false positives. But there is a trade-off between PPV and true positive
rate (TPR). TPR (also called “sensitivity” or “recall”) is the fraction of all
positives which are identified by the model:

TPR¼ TP
TPþFN

¼ True positives
All positives

ð2Þ

FN is the number of false negatives produced by the model (i.e.
the number of “unchanged” cases not identified as such). There is a
trade-off between PPV and TPR: maximizing PPV means being
conservative with our ‘positive’ predictions, which reduces false
positives but also increases false negatives (to the detriment of
TPR). While the primary objective pursued in this paper is
maximum PPV, TPR must be considered as well. To use the
Scoliosis example, a model which identifies no-change cases with
complete confidence (100% PPV) would be impractical if it identi-
fied only 1% of these cases. Fig. 1 shows three hypothetical linear
classifiers which illustrate the PPV/TPR trade-off: Classifier “A”
gives 100% PPV, “C” gives 100% TPR, and “B” gives maximum TPR
while maintaining 100% PPV.

1.2. Existing techniques for increasing PPV

Whenworking with a single feature the designer could manage
the PPV–TPR trade-off using receiver operating characteristic
(ROC) curve analysis. Selecting the threshold giving maximum
TPR at zero FPR on the ROC curve is equivalent to maximizing TPR
while maintaining 100% PPV.

But how should high-PPV predictions be made using multiple
features? One option is to use a standard multivariate modeling
technique, along with a feature selection scheme which selects the
subset of the available features giving the best-PPV model. Sahiner
et al. used a genetic algorithm (GA) to select features which
minimized a diagnostic model's FPR in the high-TPR region of
the ROC curve [4] (the opposite of the goal discussed in this
paper). This custom feature selection pushes the modeling process
toward higher predictive value models, but the core modeling

technique itself is generally still designed to maximize accuracy. In
effect, this approach enumerates several high-accuracy models
and chooses the one with the best PPV post hoc.

Another option is to apply a cost matrix C, which quantifies
how undesirable misclassifications are. C(i,j) is the cost incurred by
predicting class i when the true class is j. Depending on the
application, this “cost” may refer to a monetary cost, lost time, or
some other measurement of undesirability. The optimal prediction
is the class c which minimizes expected cost: Σ jPðjjXÞCðc; jÞ. Ling
et al. proposed a new decision tree splitting criterion for building
decision trees which minimize cost [5]. Pendharkar et al. [6] and
Chen et al. [7] used GAs to minimize cost in artificial neural
network classifiers and nearest-prototype classifiers respectively.
Cost sensitivity can also be induced by weighting or resampling
training examples proportional to misclassification costs [8–10], or
working costs into a boosting scheme [11,12]. But in our applica-
tion specifying a cost for false-positives is somewhat awkward: we
simply want no false-positives. This desire would translate into a
cost matrix with an astronomically large penalty for predicting
positive when the true class is negative. Many learning techniques –
in the process of minimizing expected cost – would avoid predicting
positive at all.

Elkan suggests it is better to train a high-accuracy classifier,
and then make high-predictive-value predictions by considering
the probability estimates it provides [13]. For example, we could
train a multivariate logistic regression model, which computes a
probability-like score for a given observation. By default the
observation is predicted positive if this score is greater than 0.5,
but we could increase PPV by increasing this threshold (using the
ROC curve analysis described above). Zaugg et al. used this
threshold moving technique to increase PPV [14], while Koh [15]
and Pendharkar [16] used it to reduce misclassification cost.
Note this approach changes the position of the model's decision
boundary, but not its orientation. In some cases optimal high-PPV
classification may require a completely different decision boundary.
Fig. 2 illustrates this problem using data from the “ecoli” dataset
[17] (with the “cytoplasm” class labeled positive, and all others
labeled negative). This figure shows the decision boundary created
by a standard logistic regression (A), and the boundary's new loca-
tion after increasing the decision threshold to maximize PPV (B).
Boundary A has imperfect PPV because it erroneously classifies
some negative instances as positives. Boundary B has maximum
PPV, but has lower TPR than the optimal maximum-PPV decision
boundary (C).
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Fig. 1. Hypothetical distribution of positive and negative instances. Each of the
three decision boundaries classifies points to its left as positive. Boundary A gives
100% PPV, boundary C gives 100% TPR, and boundary B gives maximum TPR while
maintaining 100% PPV.
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Fig. 2. A sample two-class classification problem taken from the “ecoli” dataset. A
standard logistic regression produces decision boundary A. Increasing the decision
threshold on class probability can maximize PPV by shifting the boundary to B, but
can never produce optimal linear boundary C (the boundary with maximum TPR at
100% PPV).
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