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a b s t r a c t

We address the issue of clustering examples by integrating multiple data sources, particularly

numerical vectors and nodes in a network. We propose a new, efficient spectral approach, which

integrates the two costs for clustering numerical vectors and clustering nodes in a network into a

matrix trace, reducing the issue to a trace optimization problem which can be solved by an eigenvalue

decomposition. We empirically demonstrate the performance of the proposed approach through a

variety of experiments, including both synthetic and real biological datasets.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

We address the issue of clustering examples by integrating
heterogeneous data sources, each being given independently. In
particular, we focus on the case in which examples are numerical
vectors and at the same time nodes in a network, where two
nodes connected by an edge are more likely to be in the same
cluster. This situation is general, being found in a lot of
applications.

A typical application is web page clustering. Web pages can be
clustered by their contents, say term frequencies, based on the
assumption that if the content of a page is similar to that of
another, these pages can be in the same cluster. At the same time,
web pages are hyperlinked together, forming a network, in which
nodes and edges correspond to web pages and hyperlinks,
respectively, and can be clustered based on the hyperlink
connectivity. We assume that a given graph and a given set of
numerical vectors are independently observed, meaning that the
contents of web pages and their links are independently
generated. Under this assumption, combining texts with hyper-
links is helpful for clustering web pages [1].

Another application is gene clustering, which is useful for
annotating gene functions. That is, once genes are clustered, we
can assign functions to unknown genes by using known genes in
the same cluster. Understanding gene function is important, since

there are still a lot of functionally unknown genes. For example,
the MIPS database categorizes genes (or open reading frames
(ORFs)) into three classes: characterized, uncharacterized and
dubious, and the MIPS database (as of January 25, 2010) shows
944 uncharacterized ORFs (14% of all 6607 genes) and 811
dubious ORFs (12% of all) even for Saccharomyces cerevisiae, a
most well-investigated species in biology [2]. Genes are expressed
and then function in a cell. Currently quantitative expression of
thousands of genes can be measured simultaneously by using a
technology in genetic engineering, called cDNA microarray. Thus
by repeating the experiment of cDNA microarray under various
conditions, we can have numerical vectors (generally called
profiles) of genes to do clustering genes in terms of expressions
in a cell. However, cDNA microarray data is very noisy and
unreliable. Naturally we need another data source for more
precise gene clustering, and we can have more reliable informa-
tion on genes as a gene network. For example, literature
information provides us with the co-occurrence frequencies of
genes in medical documents which can be turned into a network
of genes with the frequencies as edge weights. Similarly,
metabolic or gene regulatory networks which are generated from
literature are much more reliable than microarray data.

Our approach for this issue is based on spectral clustering,
which has been popularly used for graph partitioning [3,4].
Standard (graph-cut) criteria of graph partitioning are ratio cut [5]
and normalized cut [6], by which the number of inter-cluster edges
is minimized, keeping clusters balanced. For usual graph cuts, the
clustering cost, which should be minimized, is a matrix trace of
Rayleigh quotient, written by using a cluster assignment matrix
and a node affinity matrix. We thus can first define the clustering
cost of each of two data types: numerical vectors and a network,
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as a matrix trace of Rayleigh quotient, by which two inputs can be
combined naturally. We then follow the procedure of a standard
spectral approach, which converts the trace optimization problem
into a minimization problem with a constraint which can be
solved by Lagrange multipliers, resulting in an eigenvalue
problem. Resultant eigenvectors are used for final cluster assign-
ment by a simpler clustering method such as k-means.

Our problem setting is closely related with that of semi-

supervised clustering [7], where examples (or nodes in a graph) are
clustered under some constraints, such as must-link which makes
two nodes be in the same cluster, implying that some approaches
of semi-supervised clustering can be applied to our problem
setting. Kernel k-means is applicable to semi-supervised cluster-
ing by using a kernel which can be generated from two types of
data: numerical vectors and a network corresponding to con-
straints [8]. This approach, which can be applied to our problem
setting as well, is a competing method to which the most
attention should be paid. However, the performance of kernel
k-means is unclear even in graph partitioning, because a graph cut
which is generated from a given node affinity matrix over a graph
may neither be a kernel (i.e. a positive semi-definite matrix) nor a
well-considered kernel even if it is positive semi-definite.

In this light, the main contribution of this paper can be
summarized into three folds: (1) For graph partitioning, we
empirically confirm the performance advantage of spectral
clustering in accuracy and running time over other methods
including kernel k-means. Experimental results demonstrate that
spectral clustering is the most promising approach among the
competing methods for graph partitioning as well as our problem
setting. (2) We propose a new method for clustering examples,
represented by numerical vectors and nodes in a network. The
proposed method directly integrates the two costs: (1) clustering
numerical vectors and (2) clustering nodes in a network. Our
approach of combining two costs allows to avoid possible
problems in existing semi-supervised clustering, such as the issue
of positive semidefiniteness in kernel k-means. (3) In our problem
setting, we empirically examine a variety of costs for clustering
nodes in a network in the proposed method, comparing with
other approaches such as those for semi-supervised clustering.
This experiment reveals that our spectral approach outperforms
other methods throughout all settings in our experiment.

2. Related work

Graph partitioning or grouping examples over associations is an
NP-complete problem to which considerable work have been devoted
for more than twenty years [9,10,6]. Currently spectral clustering is
the most well-accepted approach for graph partitioning, with a
variety of publications (including reviews [3,4]), software [11] and
applications [6,12]. Spectral clustering has a lot of variations in
algorithms (such as hierarchical, recursive bipartitioning [11,13]) and
in graph cut criteria (such as ratio cut [5], normalized cut [6], Min-
Max cut [14] and other more recent criteria [15,13,16]). Another
approach for graph partitioning is kernel k-means [17], which can be
connected to spectral clustering [18]. However, a graph-cut from a
given affinity matrix can neither be a kernel (i.e. a positive semi-
definite matrix) nor be an appropriate kernel even if it is positive
semi-definite. A possible way to make an affinity matrix a semi-
definite matrix is a diagonal shift [19]. Another approach, being
related with kernel k-means, is first variation [20,21], which attempts
to minimize the same cost function of kernel k-means.

Our problem setting is very similar to that of semi-supervised
clustering (or constrained clustering), where examples are clustered
under some given constraints. Constraints are two types: hard

constraints, where constraints must be always kept [22], and soft

constraints, being more effective in real applications. An existing
approach of semi-supervised clustering is probabilistic model-based
learning, such as hidden Markov random field [7]. However, this
approach usually needs a large amount of computational cost, making
it very hard to apply to a practical application. It is then suggested to
apply kernel k-means to semi-supervised clustering [8], i.e. clustering
over a kernel, which was generated from two matrices, one from
numerical vectors and the other from constraints. However, as
mentioned in Introduction already, it is unclear that kernel k-means
works properly even on the input with a graph only, i.e. graph
partitioning. Another existing approach is to use constraints to alter
the corresponding values in the affinity matrix of given numerical
vectors [23]. For example, the affinity between two examples is set at
some maximum value if there is a must-link between these examples
[23]. In other words, this is equivalent to taking the maximum of two
affinity matrices of given examples and network constraints. Similarly
simple operations can be considered on combining two affinity
matrices, such as the weighted sum, the union or the intersection, and
perform a clustering algorithm over the combined matrix, resulting in
semi-supervised clustering. We note that these approaches for semi-
supervised clustering can be applied to our problem setting.

3. Method

3.1. Preliminaries and notations

We describe the notations that will be used throughout this
paper. Let X :¼ ðx1, . . . ,xNÞ be given numerical vectors. Let I be the
identity matrix of size N. Each xn has p entries, and let xn(i) be the

i-th entry of xn. We define x2
n :¼ xT

nxn. Let Y be a (N�N)-matrix

where its (i,j)-element is given by Y ij ¼ ð1=2NÞðxi�xjÞ
2. Let G be a

given network with N nodes and edges. Let WARN�N be a non-
negative, symmetric matrix whose (i,j) entry, wij is a non-negative
weight between nodes i and j. If there is no edge between nodes i

and j, wij is zero. We note that in our problem setting, W is an
input having all information on a given graph G and is called an
affinity matrix. Let Dd be a N�N diagonal matrix whose (i,i) entry

di satisfies that di ¼
PN

j ¼ 1 wij. Let D :¼ ddT where d :¼ ðd1, . . . ,dNÞ
T .

Let K be the number of clusters which is an input. Let IK be the
identity matrix of size K. Let Z :¼ ðz1, . . . ,zK Þ be an unsigned

cluster assignment in which zT
k ¼ ðz1,k, . . . ,zN,kÞ where zn,kðAf0,1gÞ

is 1 if xn is in cluster k, otherwise zero. Let l :¼ ðl1, . . . ,lK Þ where

lk be the representative (or the cluster center) of cluster k. Let Zk

be a set of nodes in a given graph (or numerical vectors) in cluster
k, and let jZkj be the number of all nodes (or vectors) in cluster k.

That is, iAZk if zi,k¼1, otherwise i=2Zk. Z :¼ [K
k ¼ 1Zk.

LðZk,ZkuÞ :¼
P

iAZk

P
jAZku

wij, and L :¼ LðZ,ZÞ. Let J be a cost of

clustering numerical vectors X (or/and nodes in network G). Let o
be a numerical parameter which takes a value between zero and
one, and balances the two data sources, i.e. numerical vectors X
and network G. Let M be a matrix. We write the matrix trace of M

as trðMÞ ¼
PN

i ¼ 1 Mii. Using this notation, we can easily derive the

following: trðZT MZÞ ¼
PK

k ¼ 1 zT
k Mzk. Furthermore we define the

following notation:

tr
ZT MZ

ZT Z

 !
:¼
XK

k ¼ 1

zT
k Mzk

zT
k zk

:

3.2. Proposed method

3.2.1. k-Means: clustering numerical vectors

We briefly review the k-means clustering algorithm, which has
been widely used in a lot of applications for clustering numerical

M. Shiga et al. / Pattern Recognition 44 (2011) 236–251 237



Download English Version:

https://daneshyari.com/en/article/530358

Download Persian Version:

https://daneshyari.com/article/530358

Daneshyari.com

https://daneshyari.com/en/article/530358
https://daneshyari.com/article/530358
https://daneshyari.com

