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a b s t r a c t

The Student’s-t hidden Markov model (SHMM) has been recently proposed as a robust to outliers form

of conventional continuous density hidden Markov models, trained by means of the expectation–

maximization algorithm. In this paper, we derive a tractable variational Bayesian inference algorithm

for this model. Our innovative approach provides an efficient and more robust alternative to EM-based

methods, tackling their singularity and overfitting proneness, while allowing for the automatic

determination of the optimal model size without cross-validation. We highlight the superiority of the

proposed model over the competition using synthetic and real data. We also demonstrate the merits of

our methodology in applications from diverse research fields, such as human computer interaction,

robotics and semantic audio analysis.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The hidden Markov model (HMM) is increasingly being
adopted in applications since it provides a convenient way of
modeling observations appearing in a sequential manner and
tending to cluster or to alternate between different possible
components (subpopulations). Specifically, HMMs with contin-
uous observation densities have been used in a wide spectrum of
applications in ecology, encryption, image understanding, speech
recognition, and machine vision applications [1]. The hidden
observation densities associated with each state of a continuous
HMM must be capable of approximating arbitrarily complex
probability density functions. Finite Gaussian mixture models
(GMMs) are the most common selection of emission distribution
models in the continuous HMM literature [2]. Their popularity
stems from the well-known capability of GMMs to successfully
approximate unknown random distributions, including distribu-
tions with multiple modes, while also providing a simple and
computationally efficient maximum-likelihood (ML) estimation
framework using the expectation–maximization (EM) algorithm
[3]. Nevertheless, GMMs do also suffer from a significant draw-
back concerning their parameters estimation procedure, which is

well-known to be adversely affected by the presence of outliers in
the datasets used for the model fitting.

To tackle these issues, we have proposed in [4] a novel form of
continuous HMMs where the hidden state distributions are
modeled using finite mixtures of multivariate Student’s-t den-
sities. The multivariate Student’s-t distribution is a bell-shaped
distribution with heavier tails compared to the Gaussian; as a
consequence, Student’s-t mixture models (SMMs) provide an
alternative to GMMs means of probabilistic generative modeling
with high robustness to training data outliers. The so-obtained
Student’s-t hidden Markov model (SHMM) has been considered in
[4] under the ML paradigm using the EM algorithm; as it has been
shown, the SHMM provides an effective, computationally efficient
and application-independent means for outlier tolerant represen-
tation and classification of sequential data by means of contin-
uous HMMs.

In this paper, we provide an alternative treatment of the
SHMM under a Bayesian framework using a variational approx-

imation, yielding the variational Bayesian SHMM (VB-SHMM).
Variational Bayesian treatments of statistical models present
significant advantages over ML-based alternatives: ML ap-
proaches have the undesirable property of being ill-posed since
the likelihood function is unbounded from above [5–7]. This fact
results in several very significant shortcomings. To begin with, a
significant difficulty concerns the infinities which plague the
likelihood function, associated with the collapsing of the bell-
shaped component distributions onto individual data points and,
hence, resulting in singular or near-singular covariance matrices
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[7]. Obviously, the adoption of a Bayesian model inference
algorithm, providing posterior distributions over the model
parameters instead of point-estimates, would allow for the
natural resolution of these issues [5–7]. Another central issue
ML treatments of generative models are confronted with concerns
selection of the optimal model size. Maximum likelihood is
unable to address this issue since it favors models of ever-
increasing complexity, thus leading to overfitting [17,10].

In our work, we conduct a Bayesian treatment of the SHMM,
overcoming the problems of ML approaches elegantly, by margin-
alizing over the model parameters with respect to appropriate
priors. The resulting model (marginal) likelihood can then be
maximized with respect to the model size, in case one aims at
optimal model selection, or combined with a prior over the model
size if the goal is model averaging [17,16]. Our novel approach is
based on variational approximation methods [8], which have
recently emerged as a deterministic alternative to Markov chain
Monte-Carlo (MCMC) algorithms for doing Bayesian inference for
probabilistic generative models [9,10], with better scalability in
terms of computational cost [11]. Variational Bayesian inference
has previously been applied to relevance vector machines
[12], GMMs [13], autoregressive models [14,15], SMMs [16,17],
mixtures of factor analyzers [18–20], discrete HMMs [21],
Gaussian HMMs [22], as well as HMMs with Poisson and
autoregressive observation models [23], thereby ameliorating
the singularity and overfitting problems of ML approaches.

The remainder of this paper is organized as follows: In Section
2, a brief review of the SHMM is provided. In Section 3, the
proposed variational Bayesian treatment of the SHMM is carried
out, yielding the variational Bayesian SHMM algorithm. In Section
4, the experimental evaluation of the proposed algorithm is
conducted, considering a series of data modeling and classifica-
tion applications and using real-world datasets. In the final
section, our results are summarized and discussed.

2. The Student’s-t HMM

Let us suppose an N-state HMM where the hidden emission
density of each state is modeled by a K-component finite mixture
model. Considering that the component distributions of the
K-component finite mixture models modeling the HMM state
densities are multivariate Student’s-t distributions, the definition
of the Student’s-t HMM is obtained. The pdf of a d-dimensional
Student’s-t distribution with mean l, precision R, and n degrees of
freedom is given by

tðxt jl,R,nÞ ¼
G

nþd

2

� �
jRj1=2ðpnÞ�d=2

Gðn=2Þf1þMDðxt ,ljR
�1
Þ=ngðnþdÞ=2

ð1Þ

where MDðxt ,ljR
�1
Þ is the squared Mahalanobis distance between

xt ,l with covariance matrix (inverse precision) R�1 [24] and Gð�Þ is
the Gamma function.

The SHMM can be modeled by the set of parameters

C¼ fp,A,C,H,mg, where p¼ ðpiÞ
N
i ¼ 1 is the initial-state probability

vector, A¼ ðaijÞ
N
i,j ¼ 1 is the N � N one-step transition matrix,

C ¼ ðcijÞ
N,K
i,j ¼ 1 is the N�K mixture coefficient matrix, with cij denoting

the mixing proportion of the jth component density of the hidden
emission distribution of the ith SHMM state, H is the N�K parameter
matrix that comprises the means lij and the precisions Rij of the

constituent Student’s-t densities of the model, that is H¼ ðyijÞ
N,K
i,j ¼ 1

where yij ¼ flij,Rijg, and m ¼ ðnijÞ
N,K
i,j ¼ 1 is the NK vector of the degrees

of freedom of the model component densities.
Let X ¼ fxtg

T
t ¼ 1 be an observed data sequence, with xt AXDRd,

modeled by an SHMM. The latent (unobserved) data associated

with this sequence comprise the corresponding state sequence
S¼{st}t¼1

T , where st¼1,y,N is the indicator of the state the tth
observation is emitted from, and the sequence of the correspond-
ing mixture component indicators L¼{lt}t¼1

T , where lt¼1,y,K
indicates the mixture component density that generated the tth
observation. The likelihood of the parameters set C of the SHMM
given the observable data X is, then, given by

pðXjCÞ ¼
X
S,L

ps1

YT�1

t ¼ 1

ast stþ 1

" # YT

t ¼ 1

cst lt pðxtjyst lt ,nst lt Þ

" #
ð2Þ

As it has been discussed in [24], there is no closed-form solution
for likelihood maximization of a Student’s-t distribution. However, a
computationally elegant solution can be obtained [16,17] by
exploiting the property of the Student’s-t distribution [24]

tðxtjl,R,nÞ ¼
Z 1

0
N ðxt jl,utRÞGðutjn=2,n=2Þdut ð3Þ

which implies that a Student’s-t density can be viewed as an infinite
sum of Gaussians with the same mean and scaled precisions, where
the precision scalars are Gamma-distributed latent variables
depending on the degrees of freedom of the Student’s-t density.
Let us denote as U ¼ fust lt g the sequence of the (latent) precision
scalars associated with the observed data, depending on the
corresponding unobserved state sequence and mixture component
indicator sequence. Then, we have that

xt � tðlst lt
,Rst lt ,nst lt Þ ð4Þ

is equivalent to

xtjustlt �N ðlst lt
,ustlt Rst lt Þ ð5Þ

where

pðust lt jnst lt Þ ¼ Gðust lt jnst lt=2,nst lt=2Þ ð6Þ

Under this regard, and using (3), the likelihood of the SHMM (2)
eventually becomes

pðXjCÞ ¼
X
S,L

ps1

Z
dustlt

YT�1

t ¼ 1

ast st þ 1

" # YT

t ¼ 1

cst lt pðxtjyst lt ,ust lt Þpðust lt jnst lt Þ

" #

ð7Þ

3. Variational Bayesian inference for the SHMM

Variational Bayesian inference for the SHMM comprises
introduction of a set of prior distributions over the model
parameters and further maximization of the log marginal like-
lihood (log evidence) of the resulting model. For convenience, we
choose priors conjugate to the considered observable and latent
data, as this selection greatly simplifies inference and interpret-
ability [8]. This way, the prior for the initial-state probabilities
vector is chosen to follow a Dirichlet distribution

pðpÞ ¼Dðpj/p
Þ ¼Dðp1, . . . ,pN jf

p
1 , . . . ,fp

NÞ ð8Þ

In the same fashion, we choose

pðAÞ ¼
YN
i ¼ 1

Dðai1, . . . ,aiNjf
A
i1, . . . ,fA

iNÞ ð9Þ

pðCÞ ¼
YN
i ¼ 1

Dðci1, . . . ,ciK jf
C
i1, . . . ,fC

iK Þ ð10Þ

Under the equivalent expression (5) of the Student’s-t distribu-
tion, we let the joint (conjugate exponential) prior on the means
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